Created
April 22, 2021 04:30
-
-
Save CamiloMartinezM/589426b6861398ade582afcde60a6daf to your computer and use it in GitHub Desktop.
Multi-scale pixel statistics from an input image (paper by G. Impoco et al)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
# Multi-scale pixel statistics from | |
# Segmentation of structural features in cheese micrographs using pixel statistics | |
# by G. Impoco, L. Tuminello, N. Fucà, M. Caccamo and G. Licitra | |
# Available in: https://www.sciencedirect.com/science/article/abs/pii/S0168169911002298 | |
# | |
# Adapted to Python by Camilo Martínez, [email protected] | |
# Share and enjoy. | |
# -*- coding: utf-8 -*- | |
import matplotlib.pyplot as plt | |
import scipy.ndimage | |
import numpy as np | |
import timeit | |
def convolution_approach(img: np.ndarray, scales: int) -> np.ndarray: | |
""" | |
Args: | |
img (np.ndarray): Input image. | |
scales (int, optional): Number of scales to consider, i.e neighboring window radius | |
in pixels. | |
Returns: | |
np.ndarray: Feature vectors of the input image of shape (*img.shape, 4*3*scales) | |
""" | |
directions = 4 | |
gx_img, gy_img = np.gradient(img) | |
feature_vectors = np.zeros( | |
(img.size * 3 * directions * scales,), dtype=np.float64 | |
) | |
computed_statistics_per_scale = np.zeros( | |
(scales, img.shape[0], img.shape[1], directions * 3), dtype=np.float64 | |
) | |
for scale in range(1, scales + 1): | |
computed_statistics_per_dir = np.zeros( | |
(directions, *img.shape, 3), dtype=np.float64 | |
) | |
filter_size = 2 * (scale - 1) + 3 | |
orig = np.zeros((filter_size, filter_size), dtype=np.float64) | |
orig[:, 0] = 1 / filter_size | |
for c in range(directions): | |
# c = 0 -> North; c = 1 -> East; c = 2 -> South; c = 3 -> West | |
correlation_filter = np.rot90(orig, 3 - c, (0, 1)) | |
convolution_filter = np.flip(correlation_filter) | |
directions_img = scipy.ndimage.convolve( | |
img, convolution_filter, cval=0.0, mode="constant" | |
) | |
directions_gx_img = scipy.ndimage.convolve( | |
gx_img, convolution_filter, cval=0.0, mode="constant" | |
) | |
directions_gy_img = scipy.ndimage.convolve( | |
gy_img, convolution_filter, cval=0.0, mode="constant" | |
) | |
computed_statistics_per_dir[c] = np.concatenate( | |
( | |
directions_img[..., np.newaxis], | |
directions_gx_img[..., np.newaxis], | |
directions_gy_img[..., np.newaxis], | |
), | |
axis=-1, | |
) | |
computed_statistics_per_scale[scale - 1] = np.concatenate( | |
[ | |
computed_statistics_per_dir[i][..., np.newaxis] | |
for i in range(directions) | |
], | |
axis=-1, | |
).reshape(*img.shape, 3 * directions) | |
for i in range(scales): | |
feature_vectors[i::scales] = computed_statistics_per_scale[i].flatten() | |
return feature_vectors.reshape((*img.shape, 3 * directions * scales)) | |
def naive_approach(img: np.ndarray, scales: int) -> np.ndarray: | |
""" | |
Args: | |
img (np.ndarray): Input image. | |
scales (int, optional): Number of scales to consider, i.e neighboring window radius | |
in pixels. | |
Returns: | |
np.ndarray: Feature vectors of the input image of shape (*img.shape, 4*3*scales) | |
""" | |
padded_img = np.pad(img, scales, mode="constant") | |
gx, gy = np.gradient(padded_img) | |
feature_vectors = np.zeros((img.shape[0] * img.shape[1], 4 * 3 * scales)) | |
z = 0 | |
for i in range(scales, padded_img.shape[0] - scales): | |
for j in range(scales, padded_img.shape[1] - scales): | |
for scale in range(1, scales + 1): | |
N = padded_img[i - scale, j - scale : j + scale + 1] | |
E = padded_img[i - scale : i + scale + 1, j + scale] | |
S = padded_img[i + scale, j - scale : j + scale + 1] | |
W = padded_img[i - scale : i + scale + 1, j - scale] | |
N_gx = gx[i - scale, j - scale : j + scale + 1] | |
E_gx = gx[i - scale : i + scale + 1, j + scale] | |
S_gx = gx[i + scale, j - scale : j + scale + 1] | |
W_gx = gx[i - scale : i + scale + 1, j - scale] | |
N_gy = gy[i - scale, j - scale : j + scale + 1] | |
E_gy = gy[i - scale : i + scale + 1, j + scale] | |
S_gy = gy[i + scale, j - scale : j + scale + 1] | |
W_gy = gy[i - scale : i + scale + 1, j - scale] | |
neighbors = np.vstack((N, E, S, W)) | |
avgs = np.mean(neighbors, axis=1) | |
neighbors_gx = np.vstack((N_gx, E_gx, S_gx, W_gx)) | |
grads_x = np.mean(neighbors_gx, axis=1) | |
neighbors_gy = np.vstack((N_gy, E_gy, S_gy, W_gy)) | |
grads_y = np.mean(neighbors_gy, axis=1) | |
feature_vectors[z, 4 * 3 * (scale - 1) : 4 * 3 * scale] = np.ravel( | |
(avgs, grads_x, grads_y), "F" | |
) | |
z += 1 | |
return feature_vectors.reshape((*img.shape, 4 * 3 * scales)) | |
def benchmark(scales: int = 1): | |
naive_times = [] # ms | |
convolution_times = [] # ms | |
sizes = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] | |
for size in sizes: | |
img = np.random.randn(size, size) | |
convolution_times.append( | |
1000 * timeit.timeit(lambda: convolution_approach(img, scales), number=5) / 5 | |
) | |
naive_times.append( | |
1000 * timeit.timeit(lambda: naive_approach(img, scales), number=5) / 5 | |
) | |
plt.figure(dpi=120) | |
plt.title("Average running time") | |
plt.plot(sizes, naive_times, label="Naïve approach") | |
plt.plot(sizes, convolution_times, label="Convolution approach") | |
plt.ylabel("Time [ms]") | |
plt.xlabel("N") | |
plt.legend() | |
plt.show() | |
plt.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment