Created
December 18, 2023 18:19
-
-
Save CaselIT/969f1da4f75c91a416b1d51538f53ffb to your computer and use it in GitHub Desktop.
Create random dataframe with specified number of partitions of random size
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# License: MIT | |
from argparse import ArgumentParser | |
from itertools import product | |
import numpy as np | |
import pandas as pd | |
_r = 8750 | |
_c = 15 | |
_sizes = { | |
"1m": (_r, _c), | |
"10m": (_r * 10, _c), | |
"100m": (_r * 100, _c), | |
"500m": (_r * 500, _c), | |
"1g": (_r * 1000, _c), | |
"1g-w": (_r * 100, _c * 10), | |
"4g": (_r * 1000, _c * 4 + 1), | |
} | |
SEED = None | |
def make_df( | |
size: str, | |
n_groups: int, | |
n_group_cols: int = 1, | |
*, | |
log: bool = False, | |
seed=42, | |
ordered_by_partitions: bool = False, | |
): | |
n_rows, n_cols = _sizes[size] | |
assert n_rows >= n_groups * 2 | |
assert n_group_cols < 5 and n_cols >= n_group_cols | |
rng = np.random.default_rng(seed=seed) | |
random_cols = n_cols - n_group_cols | |
df = pd.DataFrame( | |
rng.uniform(size=(n_rows, random_cols)), | |
columns=[f"c{i}" for i in range(random_cols)], | |
) | |
gb_names = "ABCDE" | |
gb_cols = list(gb_names[:n_group_cols]) | |
splits = set() | |
while len(splits) < n_groups - 1: | |
splits.add(rng.integers(1, n_rows)) | |
splits.add(n_rows) | |
start = 0 | |
arr = [] | |
for i, end in enumerate(sorted(splits)): | |
arr.append(np.full(end - start, i)) | |
start = end | |
values = np.concatenate(arr) | |
if not ordered_by_partitions: | |
rng.shuffle(values) | |
assert len(np.unique(values)) == n_groups, (len(np.unique(values)), n_groups) | |
if n_group_cols == 1: | |
df[gb_names[0]] = values.astype(np.int64) | |
else: | |
num = int(np.ceil(np.power(n_groups, 1 / n_group_cols))) | |
comb = np.array(list(product(*(range(num) for _ in range(n_group_cols)))), dtype=np.int64) | |
df[gb_cols] = comb[values] | |
if log: | |
df.info(verbose=False) | |
return df, gb_cols | |
if __name__ == "__main__": | |
parser = ArgumentParser() | |
parser.add_argument("--size", default="1g") | |
parser.add_argument("--n_groups", type=int, default=100) | |
parser.add_argument("--n-group-cols", type=int) | |
parser.add_argument("--seed", type=int) | |
args = parser.parse_args() | |
make_df(**{k: v for k, v in args.__dict__.items() if v is not None}, log=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment