Created
November 22, 2018 08:03
-
-
Save CasiaFan/6cf3e0f4c879b1b58c780d959577ef46 to your computer and use it in GitHub Desktop.
An example of using tensorflow hub for image generation with BigGAN
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import tensorflow_hub as hub | |
import cv2 | |
import numpy as np | |
from scipy.stats import truncnorm | |
# MODULE_PATH = 'https://tfhub.dev/deepmind/biggan-128/2' # 128x128 BigGAN | |
MODULE_PATH = 'https://tfhub.dev/deepmind/biggan-256/2' # 256x256 BigGAN | |
# MODULE_PATH = 'https://tfhub.dev/deepmind/biggan-512/2' # 512x512 BigGAN | |
tf.reset_default_graph() | |
module = hub.Module(MODULE_PATH) | |
inputs = {k: tf.placeholder(v.dtype, v.get_shape().as_list(), k) | |
for k, v in module.get_input_info_dict().items()} | |
output = module(inputs) | |
print("Inputs: \n", '\n'.join('{}:{}'.format(*kv) for kv in inputs.items())) | |
input_z = inputs['z'] | |
input_y = inputs['y'] | |
input_trunc = inputs['truncation'] | |
dim_z = input_z.shape.as_list()[1] | |
vocab_size = input_y.shape.as_list()[1] | |
| |
# generate random noise for image generation | |
def truncated_z_sample(batch_size, truncation=1., seed=None): | |
state = None if seed is None else np.random.RandomState(seed) | |
values = truncnorm.rvs(-2, 2, size=(batch_size, dim_z), random_state=state) | |
return truncation * values | |
def one_hot(label, vocab_size=vocab_size): | |
label = np.asarray(label) | |
if len(label.shape) <= 1: | |
label = np.asarray(label) | |
if len(label.shape) == 0: | |
label = np.asarray([label]) | |
assert len(label.shape) == 1 | |
num = label.shape[0] | |
output = np.zeros((num, vocab_size), dtype=np.float32) | |
output[np.arange(num), label] = 1 | |
label = output | |
assert len(label.shape) == 2 | |
return label | |
def sample(sess, noise, label, truncation=1., batch_size=8, vocab_size=vocab_size): | |
noise = np.asarray(noise) | |
label = np.asarray(label) | |
num = noise.shape[0] | |
if len(label.shape) == 0: | |
label = np.asarray([label] * num) | |
if label.shape[0] != num: | |
raise ValueError('Got # noise samples ({}) != # label samples ({})' | |
.format(noise.shape[0], label.shape[0])) | |
label = one_hot(label, vocab_size) | |
ims = [] | |
for batch_start in range(0, num, batch_size): | |
s = slice(batch_start, min(num, batch_start + batch_size)) | |
feed_dict = {input_z: noise[s], input_y: label[s], input_trunc: truncation} | |
ims.append(sess.run(output, feed_dict=feed_dict)) | |
ims = np.concatenate(ims, axis=0) | |
assert ims.shape[0] == num | |
ims = np.clip(((ims + 1) / 2.0) * 256, 0, 255) | |
ims = np.uint8(ims) | |
return ims | |
initializer = tf.global_variables_initializer() | |
sess = tf.Session() | |
sess.run(initializer) | |
num_samples = 5 # control number of generated images | |
truncation = 0.6 # contral fidelity | |
noise_seed = 0 | |
category = "283) Persian cat" # which category to generate | |
z = truncated_z_sample(num_samples, truncation, noise_seed) | |
y = int(category.split(')')[0]) | |
ims = sample(sess, z, y, truncation=truncation) | |
grid = np.concatenate(ims, axis=1) | |
grid = np.asarray(grid, np.uint8) | |
grid = cv2.cvtColor(grid, cv2.COLOR_RGB2BGR) | |
cv2.imshow("res", grid) | |
cv2.waitKey(0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment