Last active
May 5, 2018 06:13
-
-
Save CatherineH/1ba62dc8904dab6137f97a7735bcc77c to your computer and use it in GitHub Desktop.
Grover's search in qutip
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from random import randint | |
import matplotlib.pyplot as plt | |
from matplotlib.ticker import FormatStrFormatter | |
from qutip import tensor, basis, hadamard_transform, identity | |
# initialize the |0> and |1> qubit states | |
zero = basis(2, 0) | |
one = basis(2, 1) | |
# how many times have we applied the oracle and diffuser? | |
rounds = 0 | |
def measure(state): | |
# get the probability amplitudes of each qubit in the series, and plot it | |
probs = [] | |
for i in range(n): | |
pa = one.trans()*state.ptrace(i)*one | |
probs.append(abs(pa[0][0])) | |
fig, ax = plt.subplots(1, 1) | |
ax.plot([i for i in range(n)], probs) | |
ax.set_ylim(0, 1) | |
ax.xaxis.set_major_formatter(FormatStrFormatter('%d')) | |
ax.set_title("Solution is %s, round %s" % (solution, rounds)) | |
ax.set_xlabel("Qubit Number") | |
ax.set_ylabel("Measurement Probability (%)") | |
fig.savefig("round%s.png" % rounds) | |
# the number of qubits | |
n = 10 | |
# choose a solution at random from the number of qubits | |
solution = randint(0, n-1) | |
n_hadamard = hadamard_transform(n) | |
one_hadamard = hadamard_transform(1) | |
# create the oracle | |
solution_state = tensor(tensor(*[one if i == solution else zero for i in range(0, n)]), one) | |
oracle = tensor(*[identity(2) for i in range(0, n+1)]) - 2*solution_state*solution_state.trans() | |
# create the grover diffusion operator | |
n_zeros = tensor(*[zero for i in range(0, n)]) | |
input_state = tensor(n_hadamard*n_zeros, one_hadamard*one) | |
grover_diffusion = n_hadamard*(2*n_zeros*n_zeros.trans() - tensor(*[identity(2) for i in range(0, n)]))*n_hadamard | |
measure(input_state) | |
# apply the oracle ~ n**0.5 times | |
for i in range(int(n**0.5)+1): | |
# apply the oracle | |
input_state = tensor(grover_diffusion, identity(2))*oracle*input_state | |
rounds += 1 | |
measure(input_state) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment