Skip to content

Instantly share code, notes, and snippets.

@Cazra
Last active April 2, 2020 22:36
Show Gist options
  • Save Cazra/abbebd895d89abdf2502ff9e15cc9dd4 to your computer and use it in GitHub Desktop.
Save Cazra/abbebd895d89abdf2502ff9e15cc9dd4 to your computer and use it in GitHub Desktop.
/**
* PathMath script
*
* This is a library that provides mathematical operations involving Paths.
* It intended to be used by other scripts and has no stand-alone
* functionality of its own. All the library's operations are exposed by the
* PathMath object created by this script.
*/
var PathMath = (() => {
'use strict';
/**
* A vector used to define a homogeneous point or a direction.
* @typedef {number[]} Vector
*/
/**
* A line segment defined by two homogeneous 2D points.
* @typedef {Vector[]} Segment
*/
/**
* Information about a path's 2D transform.
* @typedef {Object} PathTransformInfo
* @property {number} angle
* The path's rotation angle in radians.
* @property {number} cx
* The x coordinate of the center of the path's bounding box.
* @property {number} cy
* The y coordinate of the center of the path's bounding box.
* @property {number} height
* The unscaled height of the path's bounding box.
* @property {number} scaleX
* The path's X-scale.
* @property {number} scaleY
* The path's Y-scale.
* @property {number} width
* The unscaled width of the path's bounding box.
*/
/**
* Rendering information for shapes.
* @typedef {Object} RenderInfo
* @property {string} [controlledby]
* @property {string} [fill]
* @property {string} [stroke]
* @property {string} [strokeWidth]
*/
/**
* Some shape defined by a path.
* @abstract
*/
class PathShape {
constructor(vertices) {
this.vertices = vertices || [];
}
/**
* Gets the distance from this shape to some point.
* @abstract
* @param {vec3} pt
* @return {number}
*/
distanceToPoint(pt) {
throw new Error('Must be defined by subclass.');
}
/**
* Gets the bounding box of this shape.
* @return {BoundingBox}
*/
getBoundingBox() {
if(!this._bbox) {
let left, right, top, bottom;
_.each(this.vertices, (v, i) => {
if(i === 0) {
left = v[0];
right = v[0];
top = v[1];
bottom = v[1];
}
else {
left = Math.min(left, v[0]);
right = Math.max(right, v[0]);
top = Math.min(top, v[1]);
bottom = Math.max(bottom, v[1]);
}
});
let width = right - left;
let height = bottom - top;
this._bbox = new BoundingBox(left, top, width, height);
}
return this._bbox;
}
/**
* Checks if this shape intersects another shape.
* @abstract
* @param {PathShape} other
* @return {boolean}
*/
intersects(other) {
throw new Error('Must be defined by subclass.');
}
/**
* Renders this path.
* @param {string} pageId
* @param {string} layer
* @param {RenderInfo} renderInfo
* @return {Roll20.Path}
*/
render(pageId, layer, renderInfo) {
let segments = this.toSegments();
let pathData = segmentsToPath(segments);
_.extend(pathData, renderInfo, {
_pageid: pageId,
layer
});
return createObj('path', pathData);
}
/**
* Returns the segments that make up this shape.
* @abstract
* @return {Segment[]}
*/
toSegments() {
throw new Error('Must be defined by subclass.');
}
/**
* Produces a copy of this shape, transformed by an affine
* transformation matrix.
* @param {MatrixMath.Matrix} matrix
* @return {PathShape}
*/
transform(matrix) {
let vertices = _.map(this.vertices, v => {
return MatrixMath.multiply(matrix, v);
});
let Clazz = this.constructor;
return new Clazz(vertices);
}
}
/**
* An open shape defined by a path or list of vertices.
*/
class Path extends PathShape {
/**
* @param {(Roll20Path|vec3[])} path
*/
constructor(path) {
super();
if(_.isArray(path))
this.vertices = path;
else {
this._segments = toSegments(path);
_.each(this._segments, (seg, i) => {
if(i === 0)
this.vertices.push(seg[0]);
this.vertices.push(seg[1]);
});
}
this.numVerts = this.vertices.length;
}
/**
* Gets the distance from this path to some point.
* @param {vec3} pt
* @return {number}
*/
distanceToPoint(pt) {
let dist = _.chain(this.toSegments())
.map(seg => {
let [ p, q ] = seg;
return VecMath.ptSegDist(pt, p, q);
})
.min()
.value();
return dist;
}
/**
* Checks if this path intersects with another path.
* @param {Polygon} other
* @return {boolean}
*/
intersects(other) {
let thisBox = this.getBoundingBox();
let otherBox = other.getBoundingBox();
// If the bounding boxes don't intersect, then the paths won't
// intersect.
if(!thisBox.intersects(otherBox))
return false;
// Naive approach: Since our shortcuts didn't return, check each
// path's segments for intersections with each of the other
// path's segments. This takes O(n^2) time.
return !!_.find(this.toSegments(), seg1 => {
return !!_.find(other.toSegments(), seg2 => {
return !!segmentIntersection(seg1, seg2);
});
});
}
/**
* Produces a list of segments defining this path.
* @return {Segment[]}
*/
toSegments() {
if(!this._segments) {
if (this.numVerts <= 1)
return [];
this._segments = _.map(_.range(this.numVerts - 1), i => {
let v = this.vertices[i];
let vNext = this.vertices[i + 1];
return [v, vNext];
});
}
return this._segments;
}
}
/**
* A closed shape defined by a path or a list of vertices.
*/
class Polygon extends PathShape {
/**
* @param {(Roll20Path|vec3[])} path
*/
constructor(path) {
super();
if(_.isArray(path))
this.vertices = path;
else {
this._segments = toSegments(path);
this.vertices = _.map(this._segments, seg => {
return seg[0];
});
}
this.numVerts = this.vertices.length;
if(this.numVerts < 3)
throw new Error('A polygon must have at least 3 vertices.');
}
/**
* Determines whether a point lies inside the polygon using the
* winding algorithm.
* See: http://geomalgorithms.com/a03-_inclusion.html
* @param {vec3} p
* @return {boolean}
*/
containsPt(p) {
// A helper function that tests if a point is "left" of a line segment.
let _isLeft = (p0, p1, p2) => {
return (p1[0] - p0[0])*(p2[1] - p0[1]) - (p2[0]-p0[0])*(p1[1]-p0[1]);
};
let total = 0;
_.each(this.vertices, (v1, i) => {
let v2 = this.vertices[(i+1) % this.numVerts];
// Check for valid up intersect.
if(v1[1] <= p[1] && v2[1] > p[1]) {
if(_isLeft(v1, v2, p) > 0)
total++;
}
// Check for valid down intersect.
else if(v1[1] > p[1] && v2[1] <= p[1]) {
if(_isLeft(v1, v2, p) < 0)
total--;
}
});
return !!total; // We are inside if our total windings are non-zero.
}
/**
* Gets the distance from this polygon to some point.
* @param {vec3} pt
* @return {number}
*/
distanceToPoint(pt) {
if(this.containsPt(pt))
return 0;
else
return _.chain(this.toSegments())
.map(seg => {
let [ p, q ] = seg;
return VecMath.ptSegDist(pt, p, q);
})
.min()
.value();
}
/**
* Gets the area of this polygon.
* @return {number}
*/
getArea() {
let triangles = this.tessellate();
return _.reduce(triangles, (area, tri) => {
return area + tri.getArea();
}, 0);
}
/**
* Determines whether each vertex along the polygon is convex (1)
* or concave (-1). A vertex lying on a straight line is assined 0.
* @return {int[]}
*/
getConvexness() {
return Polygon.getConvexness(this.vertices);
}
/**
* Gets the convexness information about each vertex.
* @param {vec3[]}
* @return {int[]}
*/
static getConvexness(vertices) {
let totalAngle = 0;
let numVerts = vertices.length;
let vertexCurves = _.map(vertices, (v, i) => {
let vPrev = vertices[(i-1 + numVerts) % numVerts];
let vNext = vertices[(i+1 + numVerts) % numVerts];
let u = VecMath.sub(v, vPrev);
let w = VecMath.sub(vNext, v);
let uHat = VecMath.normalize(u);
let wHat = VecMath.normalize(w);
let cross = VecMath.cross(uHat, wHat);
let sign = cross[2];
if(sign)
sign = sign/Math.abs(sign);
let dot = VecMath.dot(uHat, wHat);
let angle = Math.acos(dot)*sign;
totalAngle += angle;
return sign;
});
if(totalAngle < 0)
return _.map(vertexCurves, curve => {
return -curve;
});
else
return vertexCurves;
}
/**
* Checks if this polygon intersects with another polygon.
* @param {(Polygon|Path)} other
* @return {boolean}
*/
intersects(other) {
let thisBox = this.getBoundingBox();
let otherBox = other.getBoundingBox();
// If the bounding boxes don't intersect, then the polygons won't
// intersect.
if(!thisBox.intersects(otherBox))
return false;
// If either polygon contains the first point of the other, then
// they intersect.
if(this.containsPt(other.vertices[0]) ||
(other instanceof Polygon && other.containsPt(this.vertices[0])))
return true;
// Naive approach: Since our shortcuts didn't return, check each
// polygon's segments for intersections with each of the other
// polygon's segments. This takes O(n^2) time.
return !!_.find(this.toSegments(), seg1 => {
return !!_.find(other.toSegments(), seg2 => {
return !!segmentIntersection(seg1, seg2);
});
});
}
/**
* Checks if this polygon intersects a Path.
* @param {Path} path
* @return {boolean}
*/
intersectsPath(path) {
let segments1 = this.toSegments();
let segments2 = PathMath.toSegments(path);
// The path intersects if any point is inside this polygon.
if(this.containsPt(segments2[0][0]))
return true;
// Check if any of the segments intersect.
return !!_.find(segments1, seg1 => {
return _.find(segments2, seg2 => {
return PathMath.segmentIntersection(seg1, seg2);
});
});
}
/**
* Tessellates a closed path representing a simple polygon
* into a bunch of triangles.
* @return {Triangle[]}
*/
tessellate() {
let triangles = [];
let vertices = _.clone(this.vertices);
// Tessellate using ear-clipping algorithm.
while(vertices.length > 0) {
if(vertices.length === 3) {
triangles.push(new Triangle(vertices[0], vertices[1], vertices[2]));
vertices = [];
}
else {
// Determine whether each vertex is convex, concave, or linear.
let convexness = Polygon.getConvexness(vertices);
let numVerts = vertices.length;
// Find the next ear to clip from the polygon.
let earIndex = _.find(_.range(numVerts), i => {
let v = vertices[i];
let vPrev = vertices[(numVerts + i -1) % numVerts];
let vNext = vertices[(numVerts + i + 1) % numVerts];
let vConvexness = convexness[i];
if(vConvexness === 0) // The vertex lies on a straight line. Clip it.
return true;
else if(vConvexness < 0) // The vertex is concave.
return false;
else { // The vertex is convex and might be an ear.
let triangle = new Triangle(vPrev, v, vNext);
// The vertex is not an ear if there is at least one other
// vertex inside its triangle.
return !_.find(vertices, (v2, j) => {
if(v2 === v || v2 === vPrev || v2 === vNext)
return false;
else {
return triangle.containsPt(v2);
}
});
}
});
let v = vertices[earIndex];
let vPrev = vertices[(numVerts + earIndex -1) % numVerts];
let vNext = vertices[(numVerts + earIndex + 1) % numVerts];
triangles.push(new Triangle(vPrev, v, vNext));
vertices.splice(earIndex, 1);
}
}
return triangles;
}
/**
* Produces a list of segments defining this polygon.
* @return {Segment[]}
*/
toSegments() {
if(!this._segments) {
this._segments = _.map(this.vertices, (v, i) => {
let vNext = this.vertices[(i + 1) % this.numVerts];
return [v, vNext];
});
}
return this._segments;
}
}
/**
* A 3-sided polygon that is great for tessellation!
*/
class Triangle extends Polygon {
/**
* @param {vec3} p1
* @param {vec3} p2
* @param {vec3} p3
*/
constructor(p1, p2, p3) {
if(_.isArray(p1))
[p1, p2, p3] = p1;
super([p1, p2, p3]);
this.p1 = p1;
this.p2 = p2;
this.p3 = p3;
}
/**
* @inheritdoc
*/
getArea() {
let base = VecMath.sub(this.p2, this.p1);
let width = VecMath.length(base);
let height = VecMath.ptLineDist(this.p3, this.p1, this.p2);
return width*height/2;
}
}
/**
* A circle defined by its center point and radius.
*/
class Circle extends PathShape {
/**
* @param {vec3} pt
* @param {number} r
*/
constructor(pt, r) {
super();
this.center = pt;
this.radius = r;
this.diameter = 2*r;
}
/**
* Checks if a point is contained within this circle.
* @param {vec3} pt
* @return {boolean}
*/
containsPt(pt) {
let dist = VecMath.dist(this.center, pt);
return dist <= this.radius;
}
/**
* Gets the distance from this circle to some point.
* @param {vec3} pt
* @return {number}
*/
distanceToPoint(pt) {
if(this.containsPt(pt))
return 0;
else {
return VecMath.dist(this.center, pt) - this.radius;
}
}
/**
* Gets this circle's area.
* @return {number}
*/
getArea() {
return Math.PI*this.radius*this.radius;
}
/**
* Gets the circle's bounding box.
* @return {BoundingBox}
*/
getBoundingBox() {
let left = this.center[0] - this.radius;
let top = this.center[1] - this.radius;
let dia = this.radius*2;
return new BoundingBox(left, top, dia, dia);
}
/**
* Gets this circle's circumference.
* @return {number}
*/
getCircumference() {
return Math.PI*this.diameter;
}
/**
* Checks if this circle intersects another circle.
* @param {Circle} other
* @return {boolean}
*/
intersects(other) {
let dist = VecMath.dist(this.center, other.center);
return dist <= this.radius + other.radius;
}
/**
* Checks if this circle intersects a polygon.
* @param {Polygon} poly
* @return {boolean}
*/
intersectsPolygon(poly) {
// Quit early if the bounding boxes don't overlap.
let thisBox = this.getBoundingBox();
let polyBox = poly.getBoundingBox();
if(!thisBox.intersects(polyBox))
return false;
if(poly.containsPt(this.center))
return true;
return !!_.find(poly.toSegments(), seg => {
return this.segmentIntersection(seg);
});
}
/**
* Renders this circle.
* @param {string} pageId
* @param {string} layer
* @param {RenderInfo} renderInfo
*/
render(pageId, layer, renderInfo) {
let data = createCircleData(this.radius)
_.extend(data, renderInfo, {
_pageid: pageId,
layer,
left: this.center[0],
top: this.center[1]
});
createObj('path', data);
}
/**
* Gets the intersection coefficient between this circle and a Segment,
* if such an intersection exists. Otherwise, undefined is returned.
* @param {Segment} segment
* @return {Intersection}
*/
segmentIntersection(segment) {
if(this.containsPt(segment[0])) {
let pt = segment[0];
let s = 0;
let t = VecMath.dist(this.center, segment[0])/this.radius;
return [pt, s, t];
}
else {
let u = VecMath.sub(segment[1], segment[0]);
let uHat = VecMath.normalize(u);
let uLen = VecMath.length(u);
let v = VecMath.sub(this.center, segment[0]);
let height = VecMath.ptLineDist(this.center, segment[0], segment[1]);
let base = Math.sqrt(this.radius*this.radius - height*height);
if(isNaN(base))
return undefined;
let scalar = VecMath.scalarProjection(u, v)-base;
let s = scalar/uLen;
if(s >= 0 && s <= 1) {
let t = 1;
let pt = VecMath.add(segment[0], VecMath.scale(uHat, scalar));
return [pt, s, t];
}
else
return undefined;
}
}
}
/**
* The bounding box for a path/polygon.
*/
class BoundingBox {
/**
* @param {Number} left
* @param {Number} top
* @param {Number} width
* @param {Number} height
*/
constructor(left, top, width, height) {
this.left = left;
this.top = top;
this.width = width;
this.height = height;
this.right = left + width;
this.bottom = top + height;
}
/**
* Adds two bounding boxes.
* @param {BoundingBox} a
* @param {BoundingBox} b
* @return {BoundingBox}
*/
static add(a, b) {
var left = Math.min(a.left, b.left);
var top = Math.min(a.top, b.top);
var right = Math.max(a.left + a.width, b.left + b.width);
var bottom = Math.max(a.top + a.height, b.top + b.height);
return new BoundingBox(left, top, right - left, bottom - top);
}
/**
* Gets the area of this bounding box.
* @return {number}
*/
getArea() {
return this.width * this.height;
}
/**
* Checks if this bounding box intersects another bounding box.
* @param {BoundingBox} other
* @return {boolean}
*/
intersects(other) {
return !( this.left > other.right ||
this.right < other.left ||
this.top > other.bottom ||
this.bottom < other.top);
}
/**
* Renders the bounding box.
* @param {string} pageId
* @param {string} layer
* @param {RenderInfo} renderInfo
*/
render(pageId, layer, renderInfo) {
let verts = [
[this.left, this.top, 1],
[this.right, this.top, 1],
[this.right, this.bottom, 1],
[this.left, this.bottom, 1]
];
let poly = new Polygon(verts);
poly.render(pageId, layer, renderInfo);
}
}
/**
* Returns the partial path data for creating a circular path.
* @param {number} radius
* @param {int} [sides]
* If specified, then a polygonal path with the specified number of
* sides approximating the circle will be created instead of a true
* circle.
* @return {PathData}
*/
function createCircleData(radius, sides) {
var _path = [];
if(sides) {
var cx = radius;
var cy = radius;
var angleInc = Math.PI*2/sides;
path.push(['M', cx + radius, cy]);
_.each(_.range(1, sides+1), function(i) {
var angle = angleInc*i;
var x = cx + radius*Math.cos(angle);
var y = cy + radius*Math.sin(angle);
path.push(['L', x, y]);
});
}
else {
var r = radius;
_path = [
['M', 0, r],
['C', 0, r*0.5, r*0.5, 0, r, 0],
['C', r*1.5, 0, r*2, r*0.5, r*2.0, r],
['C', r*2.0, r*1.5, r*1.5, r*2.0, r, r*2.0],
['C', r*0.5, r*2, 0, r*1.5, 0, r]
];
}
return {
height: radius*2,
_path: JSON.stringify(_path),
width: radius*2
};
}
/**
* Computes the distance from a point to some path.
* @param {vec3} pt
* @param {(Roll20Path|PathShape)} path
*/
function distanceToPoint(pt, path) {
if(!(path instanceof PathShape))
path = new Path(path);
return path.distanceToPoint(pt);
}
/**
* Gets a point along some Bezier curve of arbitrary degree.
* @param {vec3[]} points
* The points of the Bezier curve. The points between the first and
* last point are the control points.
* @param {number} scalar
* The parametric value for the point we want along the curve.
* This value is expected to be in the range [0, 1].
* @return {vec3}
*/
function getBezierPoint(points, scalar) {
if(points.length < 2)
throw new Error('Bezier curve cannot have less than 2 points.');
else if(points.length === 2) {
let u = VecMath.sub(points[1], points[0]);
u = VecMath.scale(u, scalar);
return VecMath.add(points[0], u);
}
else {
let newPts = _.chain(points)
.map((cur, i) => {
if(i === 0)
return undefined;
let prev = points[i-1];
return getBezierPoint([prev, cur], scalar);
})
.compact()
.value();
return getBezierPoint(newPts, scalar);
}
}
/**
* Calculates the bounding box for a list of paths.
* @param {Roll20Path | Roll20Path[]} paths
* @return {BoundingBox}
*/
function getBoundingBox(paths) {
if(!_.isArray(paths))
paths = [paths];
var result;
_.each(paths, function(p) {
var pBox = _getSingleBoundingBox(p);
if(result)
result = BoundingBox.add(result, pBox);
else
result = pBox;
});
return result;
}
/**
* Returns the center of the bounding box countaining a path or list
* of paths. The center is returned as a 2D homongeneous point
* (It has a third component which is always 1 which is helpful for
* affine transformations).
* @param {(Roll20Path|Roll20Path[])} paths
* @return {Vector}
*/
function getCenter(paths) {
if(!_.isArray(pathjs))
paths = [paths];
var bbox = getBoundingBox(paths);
var cx = bbox.left + bbox.width/2;
var cy = bbox.top + bbox.height/2;
return [cx, cy, 1];
}
/**
* @private
* Calculates the bounding box for a single path.
* @param {Roll20Path} path
* @return {BoundingBox}
*/
function _getSingleBoundingBox(path) {
var pathData = normalizePath(path);
var width = pathData.width;
var height = pathData.height;
var left = pathData.left - width/2;
var top = pathData.top - height/2;
return new BoundingBox(left, top, width, height);
}
/**
* Gets the 2D transform information about a path.
* @param {Roll20Path} path
* @return {PathTransformInfo}
*/
function getTransformInfo(path) {
var scaleX = path.get('scaleX');
var scaleY = path.get('scaleY');
var angle = path.get('rotation')/180*Math.PI;
// The transformed center of the path.
var cx = path.get('left');
var cy = path.get('top');
// The untransformed width and height.
var width = path.get('width');
var height = path.get('height');
return {
angle: angle,
cx: cx,
cy: cy,
height: height,
scaleX: scaleX,
scaleY: scaleY,
width: width
};
}
/**
* Checks if a path is closed, and is therefore a polygon.
* @param {(Roll20Path|Segment[])}
* @return {boolean}
*/
function isClosed(path) {
// Convert to segments.
if(!_.isArray(path))
path = toSegments(path);
return (_.isEqual(path[0][0], path[path.length-1][1]));
}
/**
* Produces a merged path string from a list of path objects.
* @param {Roll20Path[]} paths
* @return {String}
*/
function mergePathStr(paths) {
var merged = [];
var bbox = getBoundingBox(paths);
_.each(paths, function(p) {
var pbox = getBoundingBox(p);
// Convert the path to a normalized polygonal path.
p = normalizePath(p);
var parsed = JSON.parse(p._path);
_.each(parsed, function(pathTuple, index) {
var dx = pbox.left - bbox.left;
var dy = pbox.top - bbox.top;
// Move and Line tuples
var x = pathTuple[1] + dx;
var y = pathTuple[2] + dy;
merged.push([pathTuple[0], x, y]);
});
});
return JSON.stringify(merged);
}
/**
* Reproduces the data for a polygonal path such that the scales are 1 and
* its rotate is 0.
* This can also normalize freehand paths, but they will be converted to
* polygonal paths. The quatric Bezier curves used in freehand paths are
* so short though, that it doesn't make much difference though.
* @param {Roll20Path}
* @return {PathData}
*/
function normalizePath(path) {
var segments = toSegments(path);
return segmentsToPath(segments);
}
/**
* Computes the intersection between the projected lines of
* two homogenous 2D line segments.
*
* Explanation of the fancy mathemagics:
* Let A be the first point in seg1 and B be the second point in seg1.
* Let C be the first point in seg2 and D be the second point in seg2.
* Let U be the vector from A to B.
* Let V be the vector from C to D.
* Let UHat be the unit vector of U.
* Let VHat be the unit vector of V.
*
* Observe that if the dot product of UHat and VHat is 1 or -1, then
* seg1 and seg2 are parallel, so they will either never intersect or they
* will overlap. We will ignore the case where seg1 and seg2 are parallel.
*
* We can represent any point P along the line projected by seg1 as
* P = A + SU, where S is some scalar value such that S = 0 yeilds A,
* S = 1 yields B, and P is on seg1 if and only if 0 <= S <= 1.
*
* We can also represent any point Q along the line projected by seg2 as
* Q = C + TV, where T is some scalar value such that T = 0 yeilds C,
* T = 1 yields D, and Q is on seg2 if and only if 0 <= T <= 1.
*
* Assume that seg1 and seg2 are not parallel and that their
* projected lines intersect at some point P.
* Therefore, we have A + SU = C + TV.
*
* We can rearrange this such that we have C - A = SU - TV.
* Let vector W = C - A, thus W = SU - TV.
* Also, let coeffs = [S, T, 1].
*
* We can now represent this system of equations as the matrix
* multiplication problem W = M * coeffs, where in column-major
* form, M = [U, -V, [0,0,1]].
*
* By matrix-multiplying both sides by M^-1, we get
* M^-1 * W = M^-1 * M * coeffs = coeffs, from which we can extract the
* values for S and T.
*
* We can now get the point of intersection on the projected lines of seg1
* and seg2 by substituting S in P = A + SU or T in Q = C + TV.
*
* @param {Segment} seg1
* @param {Segment} seg2
* @return {Intersection}
* The point of intersection in homogenous 2D coordiantes and its
* scalar coefficients along seg1 and seg2,
* or undefined if the segments are parallel.
*/
function raycast(seg1, seg2) {
var u = VecMath.sub(seg1[1], seg1[0]);
var v = VecMath.sub(seg2[1], seg2[0]);
var w = VecMath.sub(seg2[0], seg1[0]);
// Can't use 0-length vectors.
if(VecMath.length(u) === 0 || VecMath.length(v) === 0)
return undefined;
// If the two segments are parallel, then either they never intersect
// or they overlap. Either way, return undefined in this case.
var uHat = VecMath.normalize(u);
var vHat = VecMath.normalize(v);
var uvDot = VecMath.dot(uHat,vHat);
if(Math.abs(uvDot) > 0.9999)
return undefined;
// Build the inverse matrix for getting the intersection point's
// parametric coefficients along the projected segments.
var m = [[u[0], u[1], 0], [-v[0], -v[1], 0], [0, 0, 1]];
var mInv = MatrixMath.inverse(m);
// Get the parametric coefficients for getting the point of intersection
// on the projected semgents.
var coeffs = MatrixMath.multiply(mInv, w);
var s = coeffs[0];
var t = coeffs[1];
var uPrime = VecMath.scale(u, s);
return [VecMath.add(seg1[0], uPrime), s, t];
}
/**
* Computes the intersection between two homogenous 2D line segments,
* if it exists. To figure out the intersection, a raycast is performed
* between the two segments.
* Seg1 and seg2 also intersect at that point if and only if 0 <= S, T <= 1.
* @param {Segment} seg1
* @param {Segment} seg2
* @return {Intersection}
* The point of intersection in homogenous 2D coordiantes and its
* parametric coefficients along seg1 and seg2,
* or undefined if the segments don't intersect.
*/
function segmentIntersection(seg1, seg2) {
let intersection = raycast(seg1, seg2);
if(!intersection)
return undefined;
// Return the intersection only if it lies on both the segments.
let s = intersection[1];
let t = intersection[2];
if(s >= 0 && s <= 1 && t >= 0 && t <= 1)
return intersection;
else
return undefined;
}
/**
* Produces the data for creating a path from a list of segments forming a
* continuous path.
* @param {Segment[]}
* @return {PathData}
*/
function segmentsToPath(segments) {
var left = segments[0][0][0];
var right = segments[0][0][0];
var top = segments[0][0][1];
var bottom = segments[0][0][1];
// Get the bounds of the segment.
var pts = [];
var isFirst = true;
_.each(segments, function(segment) {
var p1 = segment[0];
if(isFirst) {
isFirst = false;
pts.push(p1);
}
var p2 = segment[1];
left = Math.min(left, p1[0], p2[0]);
right = Math.max(right, p1[0], p2[0]);
top = Math.min(top, p1[1], p2[1]);
bottom = Math.max(bottom, p1[1], p2[1]);
pts.push(p2);
});
// Get the path's left and top coordinates.
var width = right-left;
var height = bottom-top;
var cx = left + width/2;
var cy = top + height/2;
// Convert the points to a _path.
var _path = [];
var firstPt = true;
_.each(pts, function(pt) {
var type = 'L';
if(firstPt) {
type = 'M';
firstPt = false;
}
_path.push([type, pt[0]-left, pt[1]-top]);
});
return {
_path: JSON.stringify(_path),
left: cx,
top: cy,
width: width,
height: height
};
}
/**
* Converts a path into a list of line segments.
* This supports freehand paths, but not elliptical paths.
* @param {(Roll20Path|Roll20Path[])} path
* @return {Segment[]}
*/
function toSegments(path) {
if(_.isArray(path))
return _toSegmentsMany(path);
var _path = JSON.parse(path.get('_path'));
var transformInfo = getTransformInfo(path);
var segments = [];
var prevPt;
_.each(_path, tuple => {
let type = tuple[0];
// Convert the previous point and tuple into segments.
let newSegs = [];
if(type === 'C') { // Cubic Bezier
newSegs = _toSegmentsC(prevPt, tuple, transformInfo);
if(newSegs.length > 0)
prevPt = newSegs[newSegs.length - 1][1];
}
if(type === 'L') { // Line
newSegs = _toSegmentsL(prevPt, tuple, transformInfo);
if(newSegs.length > 0)
prevPt = newSegs[0][1];
}
if(type === 'M') { // Move
prevPt = tupleToPoint(tuple, transformInfo);
}
if(type === 'Q') { // Freehand (tiny Quadratic Bezier)
newSegs = _toSegmentsQ(prevPt, tuple, transformInfo);
if(newSegs.length > 0)
prevPt = newSegs[0][1];
}
_.each(newSegs, s => {
segments.push(s);
});
});
return _.compact(segments);
}
/**
* Converts a 'C' type path point to a list of segments approximating the
* curve.
* @private
* @param {vec3} prevPt
* @param {PathTuple} tuple
* @param {PathTransformInfo} transformInfo
* @return {Segment[]}
*/
function _toSegmentsC(prevPt, tuple, transformInfo) {
let cPt1 = tupleToPoint(['L', tuple[1], tuple[2]], transformInfo);
let cPt2 = tupleToPoint(['L', tuple[3], tuple[4]], transformInfo);
let pt = tupleToPoint(['L', tuple[5], tuple[6]], transformInfo);
let points = [prevPt, cPt1, cPt2, pt];
// Choose the number of segments based on the rough approximate arc length.
// Each segment should be <= 10 pixels.
let approxArcLength = VecMath.dist(prevPt, cPt1) + VecMath.dist(cPt1, cPt2) + VecMath.dist(cPt2, pt);
let numSegs = Math.max(Math.ceil(approxArcLength/10), 1);
let bezierPts = [prevPt];
_.each(_.range(1, numSegs), i => {
let scalar = i/numSegs;
let bPt = getBezierPoint(points, scalar);
bezierPts.push(bPt);
});
bezierPts.push(pt);
return _.chain(bezierPts)
.map((cur, i) => {
if(i === 0)
return undefined;
let prev = bezierPts[i-1];
return [prev, cur];
})
.compact()
.value();
}
/**
* Converts an 'L' type path point to a segment.
* @private
* @param {vec3} prevPt
* @param {PathTuple} tuple
* @param {PathTransformInfo} transformInfo
* @return {Segment[]}
*/
function _toSegmentsL(prevPt, tuple, transformInfo) {
// Transform the point to 2D homogeneous map coordinates.
let pt = tupleToPoint(tuple, transformInfo);
let segments = [];
if(!(prevPt[0] == pt[0] && prevPt[1] == pt[1]))
segments.push([prevPt, pt]);
return segments;
}
/**
* Converts a 'Q' type path point to a segment approximating
* the freehand curve.
* @private
* @param {vec3} prevPt
* @param {PathTuple} tuple
* @param {PathTransformInfo} transformInfo
* @return {Segment[]}
*/
function _toSegmentsQ(prevPt, tuple, transformInfo) {
// Freehand Bezier paths are very small, so let's just
// ignore the control point for it entirely.
tuple[1] = tuple[3];
tuple[2] = tuple[4];
// Transform the point to 2D homogeneous map coordinates.
let pt = tupleToPoint(tuple, transformInfo);
let segments = [];
if(!(prevPt[0] == pt[0] && prevPt[1] == pt[1]))
segments.push([prevPt, pt]);
return segments;
}
/**
* Converts several paths into a single list of segments.
* @private
* @param {Roll20Path[]} paths
* @return {Segment[]}
*/
function _toSegmentsMany(paths) {
return _.chain(paths)
.reduce(function(allSegments, path) {
return allSegments.concat(toSegments(path));
}, [])
.value();
}
/**
* Transforms a tuple for a point in a path into a point in
* homogeneous 2D map coordinates.
* @param {PathTuple} tuple
* @param {PathTransformInfo} transformInfo
* @return {Vector}
*/
function tupleToPoint(tuple, transformInfo) {
var width = transformInfo.width;
var height = transformInfo.height;
var scaleX = transformInfo.scaleX;
var scaleY = transformInfo.scaleY;
var angle = transformInfo.angle;
var cx = transformInfo.cx;
var cy = transformInfo.cy;
// The point in path coordinates, relative to the path center.
var x = tuple[1] - width/2;
var y = tuple[2] - height/2;
var pt = [x,y,1];
// The transform of the point from path coordinates to map
// coordinates.
var scale = MatrixMath.scale([scaleX, scaleY]);
var rotate = MatrixMath.rotate(angle);
var transform = MatrixMath.translate([cx, cy]);
transform = MatrixMath.multiply(transform, rotate);
transform = MatrixMath.multiply(transform, scale);
return MatrixMath.multiply(transform, pt);
}
on('chat:message', function(msg) {
if(msg.type === 'api' && msg.content.indexOf('!pathInfo') === 0) {
log('!pathInfo');
try {
var path = findObjs({
_type: 'path',
_id: msg.selected[0]._id
})[0];
log(path);
log(path.get('_path'));
var segments = toSegments(path);
log('Segments: ');
log(segments);
var pathData = segmentsToPath(segments);
log('New path data: ');
log(pathData);
var curPage = path.get('_pageid');
_.extend(pathData, {
stroke: '#ff0000',
_pageid: curPage,
layer: path.get('layer')
});
var newPath = createObj('path', pathData);
log(newPath);
}
catch(err) {
log('!pathInfo ERROR: ');
log(err.message);
}
}
});
return {
BoundingBox,
Circle,
Path,
Polygon,
Triangle,
createCircleData,
distanceToPoint,
getBezierPoint,
getBoundingBox,
getCenter,
getTransformInfo,
mergePathStr,
normalizePath,
raycast,
segmentIntersection,
segmentsToPath,
toSegments,
tupleToPoint
};
})();
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment