Building a robust microservice registry AI assistant tailored to Go-based system. Here we adapt an initial LangGraph and Graphiti-based approach to fit within a Go ecosystem, leveraging alternative technologies and methodologies to achieve similar functionality.
- Goal: Develop an AI assistant for your GitHub/Docker microservice registry service using Go, without relying on Neo4j.
- Key Components:
- Data Storage: Replace Neo4j/Graphiti with a suitable alternative (e.g., PostgreSQL).
- AI Integration: Utilize OpenAI's API or similar services to handle natural language processing.
- API Development: Build RESTful or GraphQL APIs in Go to interact with the AI assistant.
- State Management: Implement mechanisms to maintain conversation state and persist interactions.
- Choose an Alternative Data Storage Solution: Opt for a relational database like PostgreSQL.
- Implement Data Models in Go: Define your data structures and interact with the database using GORM.
- Implement Search Functionality: Utilize PostgreSQL's full-text search or integrate Elasticsearch for advanced querying.
- Integrate AI Capabilities: Use OpenAI's API to handle natural language queries and generate responses.
- Build the AI Assistant Logic: Create functions to process user queries, interact with the database, and generate responses.
- Develop an API for Interaction: Use a web framework like Gin to create endpoints for user interactions.
- Ensure Robustness: Incorporate concurrency management, error handling, security measures, and testing.
- Deploy and Monitor: Set up deployment pipelines and monitoring tools to maintain system health.
Let's dive into each step in detail!
Given your requirements and the need to exclude Neo4j, PostgreSQL is an excellent choice due to its robustness, support for complex queries, and full-text search capabilities.
Why PostgreSQL?
- ACID Compliance: Ensures reliable transactions.
- Full-Text Search: Facilitates efficient searching across large text datasets.
- Extensibility: Supports various extensions for additional functionalities.
- Community and Support: Extensive documentation and active community.
Installation
Ensure PostgreSQL is installed and running on your system. You can download it from PostgreSQL Downloads.
Create a Database
# Access PostgreSQL shell
psql -U postgres
# Create a new database
CREATE DATABASE registry_db;
# Create a new user with a password
CREATE USER registry_user WITH PASSWORD 'your_secure_password';
# Grant privileges
GRANT ALL PRIVILEGES ON DATABASE registry_db TO registry_user;
# Exit the shell
\q
Use GORM, a popular ORM library for Go, to interact with PostgreSQL.
Install GORM and PostgreSQL Driver
go get -u gorm.io/gorm
go get -u gorm.io/driver/postgres
Define Data Structures
package models
import (
"time"
"gorm.io/gorm"
)
// RegistryItem represents an individual repository in the registry.
type RegistryItem struct {
ID string `gorm:"primaryKey;type:uuid;default:uuid_generate_v4()"`
Name string `gorm:"not null"`
Type string `gorm:"not null"`
Status string `gorm:"not null"`
Path string `gorm:"not null"`
CreatedAt time.Time `gorm:"autoCreateTime"`
LastUpdated time.Time `gorm:"autoUpdateTime"`
Enabled bool `gorm:"default:true"`
HasDockerfile bool `gorm:"default:false"`
Metadata RegistryMetadata `gorm:"type:jsonb"`
}
// RegistryMetadata holds additional configuration details.
type RegistryMetadata struct {
Description string `json:"description"`
Owner string `json:"owner"`
LastUpdated time.Time `json:"last_updated"`
Tags []string `json:"tags"`
GitHub GitHubMetadata `json:"github"`
Docker DockerMetadata `json:"docker"`
CustomProperties CustomPropertiesData `json:"custom_properties"`
}
// GitHubMetadata holds GitHub-related information.
type GitHubMetadata struct {
Stars int `json:"stars"`
Forks int `json:"forks"`
Issues int `json:"issues"`
PullRequests PullRequestMetadata `json:"pull_requests"`
LatestCommit string `json:"latest_commit"`
License string `json:"license"`
Topics []string `json:"topics"`
}
// PullRequestMetadata holds pull request details.
type PullRequestMetadata struct {
Open int `json:"open"`
Closed int `json:"closed"`
}
// DockerMetadata holds Docker-related information.
type DockerMetadata struct {
Dockerfile DockerfileMetadata `json:"dockerfile"`
DockerCompose DockerComposeMetadata `json:"docker_compose"`
}
// DockerfileMetadata holds Dockerfile details.
type DockerfileMetadata struct {
ExposedPorts []string `json:"exposed_ports"`
EnvVars []string `json:"env_vars"`
Cmd string `json:"cmd"`
Entrypoint string `json:"entrypoint"`
Volumes []string `json:"volumes"`
}
// DockerComposeMetadata holds Docker Compose details.
type DockerComposeMetadata struct {
Services []string `json:"services"`
Ports map[string][]string `json:"ports"`
Volumes map[string][]string `json:"volumes"`
EnvVars map[string][]string `json:"env_vars"`
Command map[string]string `json:"command"`
}
// CustomPropertiesData holds custom properties.
type CustomPropertiesData struct {
DeployEnvironment string `json:"deploy_environment"`
MonitoringEnabled bool `json:"monitoring_enabled"`
AutoScale bool `json:"auto_scale"`
Service string `json:"service"`
App string `json:"app"`
Image string `json:"image"`
Ports []string `json:"ports"`
Volumes []string `json:"volumes"`
Network string `json:"network"`
Domain string `json:"domain"`
}
Initialize the Database Connection
package database
import (
"fmt"
"log"
"os"
"your_project/models"
"gorm.io/driver/postgres"
"gorm.io/gorm"
)
func InitDB() *gorm.DB {
dsn := fmt.Sprintf("host=%s user=%s password=%s dbname=%s port=%s sslmode=disable",
os.Getenv("DB_HOST"),
os.Getenv("DB_USER"),
os.Getenv("DB_PASSWORD"),
os.Getenv("DB_NAME"),
os.Getenv("DB_PORT"),
)
db, err := gorm.Open(postgres.Open(dsn), &gorm.Config{})
if err != nil {
log.Fatalf("failed to connect to database: %v", err)
}
// Enable UUID extension
db.Exec("CREATE EXTENSION IF NOT EXISTS \"uuid-ossp\";")
// Migrate the schema
err = db.AutoMigrate(&models.RegistryItem{})
if err != nil {
log.Fatalf("failed to migrate database: %v", err)
}
return db
}
Environment Variables
Ensure you have the following environment variables set (e.g., in a .env
file):
DB_HOST=localhost
DB_USER=registry_user
DB_PASSWORD=your_secure_password
DB_NAME=registry_db
DB_PORT=5432
OPENAI_API_KEY=your_openai_api_key
Load Environment Variables
Use the godotenv
package to load environment variables.
go get github.com/joho/godotenv
package main
import (
"log"
"github.com/joho/godotenv"
"your_project/database"
)
func main() {
// Load environment variables
err := godotenv.Load()
if err != nil {
log.Println("No .env file found. Using environment variables.")
}
// Initialize database
db := database.InitDB()
// Continue with setting up the server...
_ = db
}
To enable efficient searching, you can utilize PostgreSQL's Full-Text Search or integrate Elasticsearch for more advanced querying.
Add a Search Index
CREATE INDEX registryitem_search_idx ON registry_items USING GIN(to_tsvector('english', name || ' ' || type || ' ' || status || ' ' || metadata::text));
Implement Search in Go
package repository
import (
"your_project/models"
"gorm.io/gorm"
)
func SearchRegistryItems(db *gorm.DB, query string) ([]models.RegistryItem, error) {
var items []models.RegistryItem
searchQuery := "to_tsvector('english', name || ' ' || type || ' ' || status || ' ' || metadata::text) @@ plainto_tsquery(?)"
err := db.Where(searchQuery, query).Find(&items).Error
return items, err
}
For more advanced search capabilities, Elasticsearch is a powerful tool.
Installation
Download and install Elasticsearch from Elasticsearch Downloads.
Install Go Elasticsearch Client
go get github.com/elastic/go-elasticsearch/v8
Initialize Elasticsearch Client
package elasticsearch
import (
"log"
"os"
"github.com/elastic/go-elasticsearch/v8"
)
func InitElasticsearch() *elasticsearch.Client {
cfg := elasticsearch.Config{
Addresses: []string{
os.Getenv("ELASTICSEARCH_URL"), // e.g., "http://localhost:9200"
},
}
es, err := elasticsearch.NewClient(cfg)
if err != nil {
log.Fatalf("Error creating Elasticsearch client: %s", err)
}
return es
}
Indexing Data
Implement functions to index your RegistryItem
data into Elasticsearch.
package repository
import (
"bytes"
"context"
"encoding/json"
"fmt"
"log"
"your_project/models"
"github.com/elastic/go-elasticsearch/v8"
"github.com/elastic/go-elasticsearch/v8/esapi"
)
type ElasticRepository struct {
Client *elasticsearch.Client
Index string
}
func NewElasticRepository(client *elasticsearch.Client, index string) *ElasticRepository {
return &ElasticRepository{
Client: client,
Index: index,
}
}
func (er *ElasticRepository) IndexRegistryItem(item models.RegistryItem) error {
data, err := json.Marshal(item)
if err != nil {
return err
}
req := esapi.IndexRequest{
Index: er.Index,
DocumentID: item.ID,
Body: bytes.NewReader(data),
Refresh: "true",
}
res, err := req.Do(context.Background(), er.Client)
if err != nil {
return err
}
defer res.Body.Close()
if res.IsError() {
return fmt.Errorf("error indexing document ID=%s", item.ID)
}
return nil
}
func (er *ElasticRepository) SearchRegistryItems(query string) ([]models.RegistryItem, error) {
var r map[string]interface{}
var items []models.RegistryItem
searchBody := map[string]interface{}{
"query": map[string]interface{}{
"multi_match": map[string]interface{}{
"query": query,
"fields": []string{"name", "type", "status", "metadata.description"},
},
},
}
data, err := json.Marshal(searchBody)
if err != nil {
return items, err
}
res, err := er.Client.Search(
er.Client.Search.WithContext(context.Background()),
er.Client.Search.WithIndex(er.Index),
er.Client.Search.WithBody(bytes.NewReader(data)),
er.Client.Search.WithTrackTotalHits(true),
er.Client.Search.WithPretty(),
)
if err != nil {
return items, err
}
defer res.Body.Close()
if res.IsError() {
return items, fmt.Errorf("error searching: %s", res.String())
}
if err := json.NewDecoder(res.Body).Decode(&r); err != nil {
return items, err
}
for _, hit := range r["hits"].(map[string]interface{})["hits"].([]interface{}) {
source := hit.(map[string]interface{})["_source"]
sourceBytes, _ := json.Marshal(source)
var item models.RegistryItem
if err := json.Unmarshal(sourceBytes, &item); err != nil {
log.Println("Error unmarshaling search hit:", err)
continue
}
items = append(items, item)
}
return items, nil
}
Usage
package main
import (
"log"
"your_project/database"
"your_project/models"
"your_project/repository"
"github.com/elastic/go-elasticsearch/v8"
)
func main() {
// Initialize database
db := database.InitDB()
// Initialize Elasticsearch
esClient, err := elasticsearch.NewDefaultClient()
if err != nil {
log.Fatalf("Error creating the client: %s", err)
}
esRepo := repository.NewElasticRepository(esClient, "registry_items")
// Example: Index a RegistryItem
item := models.RegistryItem{
ID: "8fedb80d-c984-436b-9281-e19302c97734",
Name: "Cdaprod/_middleware-infrastructure",
Type: "service",
Status: "active",
Path: "https://github.com/Cdaprod/_middleware-infrastructure",
CreatedAt: time.Now(),
LastUpdated: time.Now(),
Enabled: true,
HasDockerfile: true,
Metadata: models.RegistryMetadata{
Description: "Auto-generated configuration for Cdaprod/_middleware-infrastructure",
Owner: "Cdaprod",
LastUpdated: time.Now(),
Tags: []string{},
GitHub: models.GitHubMetadata{
Stars: 1,
Forks: 0,
Issues: 0,
PullRequests: models.PullRequestMetadata{Open: 0, Closed: 0},
LatestCommit: "2024-09-30T17:24:07Z",
License: "NOASSERTION",
Topics: []string{},
},
Docker: models.DockerMetadata{
Dockerfile: models.DockerfileMetadata{
ExposedPorts: []string{"8080"},
EnvVars: []string{},
Cmd: "",
Entrypoint: "[/main]",
Volumes: []string{},
},
DockerCompose: models.DockerComposeMetadata{
Services: []string{"middleware-infrastructure"},
Ports: map[string][]string{
"middleware-infrastructure": {"8080"},
},
Volumes: map[string][]string{
"middleware-infrastructure": {""},
},
EnvVars: map[string][]string{
"middleware-infrastructure": {"GO_ENV", "PORT"},
},
Command: map[string]string{
"middleware-infrastructure": "",
},
},
},
CustomProperties: models.CustomPropertiesData{
DeployEnvironment: "",
MonitoringEnabled: false,
AutoScale: false,
Service: "",
App: "_middleware-infrastructure",
Image: "Cdaprod/_middleware-infrastructure:9badff3",
Ports: []string{"8080"},
Volumes: []string{},
Network: "project-domain-namespace",
Domain: "_middleware-infrastructure.Cdaprod.dev",
},
},
}
// Save to PostgreSQL
if err := db.Create(&item).Error; err != nil {
log.Fatalf("Error saving item to DB: %v", err)
}
// Index in Elasticsearch
if err := esRepo.IndexRegistryItem(item); err != nil {
log.Fatalf("Error indexing item in Elasticsearch: %v", err)
}
log.Println("RegistryItem successfully saved and indexed.")
}
Leverage OpenAI's GPT models to handle natural language queries. Use a Go client library to interact with the OpenAI API.
Install OpenAI Go Client
We'll use the sashabaranov/go-openai
client.
go get github.com/sashabaranov/go-openai
Initialize OpenAI Client
package ai
import (
"context"
"log"
"os"
openai "github.com/sashabaranov/go-openai"
)
type OpenAIClient struct {
Client *openai.Client
}
func NewOpenAIClient() *OpenAIClient {
apiKey := os.Getenv("OPENAI_API_KEY")
if apiKey == "" {
log.Fatal("OPENAI_API_KEY is not set")
}
client := openai.NewClient(apiKey)
return &OpenAIClient{Client: client}
}
func (c *OpenAIClient) GetAIResponse(messages []openai.ChatCompletionMessage) (string, error) {
resp, err := c.Client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
Model: openai.GPT3Dot5Turbo,
Messages: messages,
})
if err != nil {
return "", err
}
if len(resp.Choices) == 0 {
return "", nil
}
return resp.Choices[0].Message.Content, nil
}
Define the Chatbot Logic
package chatbot
import (
"log"
"time"
"your_project/models"
"your_project/repository"
openai "github.com/sashabaranov/go-openai"
)
type Chatbot struct {
AIClient *ai.OpenAIClient
DB *gorm.DB
ESRepo *repository.ElasticRepository
}
func NewChatbot(aiClient *ai.OpenAIClient, db *gorm.DB, esRepo *repository.ElasticRepository) *Chatbot {
return &Chatbot{
AIClient: aiClient,
DB: db,
ESRepo: esRepo,
}
}
func (cb *Chatbot) HandleUserQuery(userName string, userNodeUUID string, query string) (string, error) {
// Step 1: Use AI to interpret the query and extract intent
intent, err := cb.extractIntent(query)
if err != nil {
return "I'm sorry, I couldn't understand your request.", err
}
// Step 2: Based on intent, interact with the database or Elasticsearch
var response string
switch intent.Action {
case "GetStatus":
item, err := cb.DB.First(&models.RegistryItem{}, "id = ?", intent.ServiceID).Error
if err != nil {
return "Service not found.", err
}
response = fmt.Sprintf("The status of %s is %s.", item.Name, item.Status)
case "SearchServices":
items, err := cb.ESRepo.SearchRegistryItems(intent.Query)
if err != nil {
return "Error searching for services.", err
}
response = cb.formatSearchResults(items)
default:
response = "I'm sorry, I didn't understand your request."
}
// Step 3: Log the interaction
err = cb.logInteraction(userName, query, response)
if err != nil {
log.Println("Error logging interaction:", err)
}
return response, nil
}
type Intent struct {
Action string
ServiceID string
Query string
}
func (cb *Chatbot) extractIntent(query string) (Intent, error) {
messages := []openai.ChatCompletionMessage{
{
Role: openai.ChatMessageRoleSystem,
Content: "You are an assistant that helps users interact with a microservice registry. Extract the intent from the user's query.",
},
{
Role: openai.ChatMessageRoleUser,
Content: query,
},
}
response, err := cb.AIClient.GetAIResponse(messages)
if err != nil {
return Intent{}, err
}
// Assume the AI returns a JSON object with Action, ServiceID, and Query
var intent Intent
err = json.Unmarshal([]byte(response), &intent)
if err != nil {
return Intent{}, err
}
return intent, nil
}
func (cb *Chatbot) formatSearchResults(items []models.RegistryItem) string {
if len(items) == 0 {
return "No services found matching your query."
}
result := "Here are the services I found:\n"
for _, item := range items {
result += fmt.Sprintf("- %s (Status: %s)\n", item.Name, item.Status)
}
return result
}
func (cb *Chatbot) logInteraction(userName, userQuery, botResponse string) error {
// Implement logging logic, e.g., save to the database
interaction := models.Interaction{
UserName: userName,
UserQuery: userQuery,
BotResponse: botResponse,
Timestamp: time.Now(),
}
return cb.DB.Create(&interaction).Error
}
Define the Interaction Model
package models
import "time"
// Interaction logs user queries and bot responses.
type Interaction struct {
ID uint `gorm:"primaryKey"`
UserName string `gorm:"not null"`
UserQuery string `gorm:"not null"`
BotResponse string `gorm:"not null"`
Timestamp time.Time `gorm:"autoCreateTime"`
}
Migration
Ensure the Interaction
model is migrated.
// In database/init.go after migrating RegistryItem
db.AutoMigrate(&models.Interaction{})
Now, integrate the chatbot logic with your API to handle incoming user queries.
Define API Endpoints Using Gin
Install Gin
go get -u github.com/gin-gonic/gin
Set Up the Server
package main
import (
"log"
"your_project/ai"
"your_project/chatbot"
"your_project/database"
"your_project/repository"
"github.com/gin-gonic/gin"
"github.com/joho/godotenv"
"gorm.io/gorm"
)
func main() {
// Load environment variables
err := godotenv.Load()
if err != nil {
log.Println("No .env file found. Using environment variables.")
}
// Initialize database
db := database.InitDB()
// Initialize Elasticsearch
esRepo := repository.NewElasticRepository(repository.InitElasticsearch(), "registry_items")
// Initialize AI Client
aiClient := ai.NewOpenAIClient()
// Initialize Chatbot
cb := chatbot.NewChatbot(aiClient, db, esRepo)
// Set up Gin router
router := gin.Default()
// Define routes
router.POST("/query", func(c *gin.Context) {
var req struct {
UserName string `json:"user_name" binding:"required"`
Query string `json:"query" binding:"required"`
}
if err := c.ShouldBindJSON(&req); err != nil {
c.JSON(400, gin.H{"error": err.Error()})
return
}
// Handle user query
response, err := cb.HandleUserQuery(req.UserName, "", req.Query) // userNodeUUID can be managed as needed
if err != nil {
c.JSON(500, gin.H{"error": "Internal server error."})
return
}
c.JSON(200, gin.H{"response": response})
})
// Start server
if err := router.Run(":8080"); err != nil {
log.Fatalf("Failed to run server: %v", err)
}
}
Example Request
curl -X POST http://localhost:8080/query \
-H "Content-Type: application/json" \
-d '{
"user_name": "alice",
"query": "What is the status of the _middleware-infrastructure service?"
}'
Example Response
{
"response": "The status of Cdaprod/_middleware-infrastructure is active."
}
To build a strong and reliable system, implement the following best practices:
- GORM: GORM's DB instance is safe for concurrent use by multiple goroutines.
- Elasticsearch Client: The
go-elasticsearch
client is also safe for concurrent use.
- Graceful Degradation: Provide meaningful error messages to users.
- Logging: Use structured logging (e.g., with
logrus
orzap
) for better log management.
Example with Structured Logging Using Logrus
go get github.com/sirupsen/logrus
package main
import (
"github.com/sirupsen/logrus"
)
var log = logrus.New()
func main() {
// Set log format
log.SetFormatter(&logrus.JSONFormatter{})
// Set log level
log.SetLevel(logrus.InfoLevel)
// Use log instead of standard log
log.Info("Starting server...")
}
- Input Sanitization: Prevent SQL injection by using parameterized queries (handled by GORM).
- API Authentication: Implement authentication mechanisms (e.g., API keys, OAuth) to secure your endpoints.
- Environment Variables: Securely manage API keys and sensitive data, avoiding hardcoding them.
- Unit Tests: Write tests for individual functions and methods.
- Integration Tests: Test interactions between components (e.g., API endpoints with the database).
- Mocking: Use mocking libraries to simulate external dependencies.
Example Unit Test for Chatbot
package chatbot
import (
"testing"
"your_project/ai"
"your_project/repository"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/mock"
"gorm.io/gorm"
)
// MockAIClient is a mock of OpenAIClient
type MockAIClient struct {
mock.Mock
}
func (m *MockAIClient) GetAIResponse(messages []openai.ChatCompletionMessage) (string, error) {
args := m.Called(messages)
return args.String(0), args.Error(1)
}
func TestHandleUserQuery(t *testing.T) {
// Setup mocks
mockAI := new(MockAIClient)
mockAI.On("GetAIResponse", mock.Anything).Return(`{"Action":"GetStatus","ServiceID":"8fedb80d-c984-436b-9281-e19302c97734","Query":""}`, nil)
// Mock DB and Elasticsearch
var db *gorm.DB // Initialize a test DB or mock as needed
esRepo := &repository.ElasticRepository{} // Mock as needed
// Initialize Chatbot
cb := &Chatbot{
AIClient: mockAI,
DB: db,
ESRepo: esRepo,
}
// Execute
response, err := cb.HandleUserQuery("alice", "", "What is the status of the _middleware-infrastructure service?")
// Assert
assert.Nil(t, err)
assert.Equal(t, "The status of Cdaprod/_middleware-infrastructure is active.", response)
// Verify
mockAI.AssertExpectations(t)
}
- Logging: Implement comprehensive logging to track system behavior and troubleshoot issues.
- Monitoring: Use tools like Prometheus and Grafana to monitor application performance and health.
- Alerts: Set up alerts for critical issues (e.g., system downtime, high error rates).
Integrate Prometheus for Metrics
go get github.com/prometheus/client_golang/prometheus
go get github.com/prometheus/client_golang/prometheus/promhttp
package main
import (
"net/http"
"github.com/gin-gonic/gin"
"github.com/prometheus/client_golang/prometheus/promhttp"
)
func main() {
// Existing setup...
// Add Prometheus metrics endpoint
router.GET("/metrics", gin.WrapH(promhttp.Handler()))
// Start server
if err := router.Run(":8080"); err != nil {
log.Fatalf("Failed to run server: %v", err)
}
}
You've already set up a basic API endpoint (/query
). To enhance functionality, consider adding more endpoints for additional operations like adding new registry items, updating services, etc.
Example: Add New Registry Item
router.POST("/add", func(c *gin.Context) {
var item models.RegistryItem
if err := c.ShouldBindJSON(&item); err != nil {
c.JSON(400, gin.H{"error": err.Error()})
return
}
// Save to PostgreSQL
if err := db.Create(&item).Error; err != nil {
c.JSON(500, gin.H{"error": "Failed to add item."})
return
}
// Index in Elasticsearch
if err := esRepo.IndexRegistryItem(item); err != nil {
c.JSON(500, gin.H{"error": "Failed to index item."})
return
}
c.JSON(200, gin.H{"status": "Item added successfully."})
})
Example Request
curl -X POST http://localhost:8080/add \
-H "Content-Type: application/json" \
-d '{
"id": "8fedb80d-c984-436b-9281-e19302c97734",
"name": "Cdaprod/_middleware-infrastructure",
"type": "service",
"status": "active",
"path": "https://github.com/Cdaprod/_middleware-infrastructure",
"enabled": true,
"has_dockerfile": true,
"metadata": {
"description": "Auto-generated configuration for Cdaprod/_middleware-infrastructure",
"owner": "Cdaprod",
"last_updated": "2024-10-15T16:23:59Z",
"tags": [],
"github": {
"stars": 1,
"forks": 0,
"issues": 0,
"pull_requests": {
"open": 0,
"closed": 0
},
"latest_commit": "2024-09-30T17:24:07Z",
"license": "NOASSERTION",
"topics": []
},
"docker": {
"dockerfile": {
"exposed_ports": ["8080"],
"env_vars": [],
"cmd": "",
"entrypoint": "[/main]",
"volumes": []
},
"docker_compose": {
"services": ["middleware-infrastructure"],
"ports": {
"middleware-infrastructure": ["8080"]
},
"volumes": {
"middleware-infrastructure": [""]
},
"env_vars": {
"middleware-infrastructure": ["GO_ENV", "PORT"]
},
"command": {
"middleware-infrastructure": ""
}
}
},
"custom_properties": {
"deploy_environment": null,
"monitoring_enabled": null,
"auto_scale": null,
"service": null,
"app": "_middleware-infrastructure",
"image": "Cdaprod/_middleware-infrastructure:9badff3",
"ports": ["8080"],
"volumes": [],
"network": "project-domain-namespace",
"domain": "_middleware-infrastructure.Cdaprod.dev"
}
}
}'
Example Response
{
"status": "Item added successfully."
}
To ensure your system remains robust and evolves with your needs, consider the following:
- Automated Updates: Implement scheduled tasks to refresh data from GitHub repositories, Docker registries, etc.
- Webhooks: Use GitHub and Docker webhooks to receive real-time updates and reflect changes in your registry.
Example: GitHub Webhook Handler
router.POST("/webhook/github", func(c *gin.Context) {
var payload github.WebhookPayload
if err := c.ShouldBindJSON(&payload); err != nil {
c.JSON(400, gin.H{"error": "Invalid payload"})
return
}
// Process the payload and update the registry
go processGitHubWebhook(payload)
c.JSON(200, gin.H{"status": "Webhook received"})
})
func processGitHubWebhook(payload github.WebhookPayload) {
// Implement logic to update registry based on the webhook
}
- Redis: Integrate Redis to cache frequent queries and reduce database load.
- In-Memory Caching: Use Go's in-memory structures or libraries like
groupcache
for caching.
Example: Integrate Redis for Caching
go get github.com/go-redis/redis/v8
package cache
import (
"context"
"log"
"os"
"time"
"github.com/go-redis/redis/v8"
)
type RedisClient struct {
Client *redis.Client
}
func InitRedis() *RedisClient {
rdb := redis.NewClient(&redis.Options{
Addr: os.Getenv("REDIS_ADDR"), // e.g., "localhost:6379"
Password: os.Getenv("REDIS_PASSWORD"), // no password set
DB: 0, // use default DB
})
// Ping to test connection
_, err := rdb.Ping(context.Background()).Result()
if err != nil {
log.Fatalf("Failed to connect to Redis: %v", err)
}
return &RedisClient{Client: rdb}
}
func (rc *RedisClient) Get(key string) (string, error) {
return rc.Client.Get(context.Background(), key).Result()
}
func (rc *RedisClient) Set(key string, value string, expiration time.Duration) error {
return rc.Client.Set(context.Background(), key, value, expiration).Err()
}
Usage in Chatbot
func (cb *Chatbot) HandleUserQuery(userName string, userNodeUUID string, query string) (string, error) {
cacheKey := fmt.Sprintf("query:%s", query)
// Check cache first
cachedResponse, err := cacheClient.Get(cacheKey)
if err == nil && cachedResponse != "" {
return cachedResponse, nil
}
// Proceed with handling the query
response, err := cb.processQuery(userName, userNodeUUID, query)
if err != nil {
return response, err
}
// Cache the response
cacheClient.Set(cacheKey, response, 10*time.Minute)
return response, nil
}
- Load Balancing: Use tools like NGINX or HAProxy to distribute traffic across multiple instances.
- Containerization: Containerize your application using Docker for easy deployment and scaling.
- Orchestration: Utilize Kubernetes for managing containerized applications at scale.
- User Feedback: Implement mechanisms to collect user feedback on AI responses to continuously improve the system.
- Analytics: Analyze interaction logs to identify common queries and areas for improvement.
Deploy your application in a production environment and set up monitoring to ensure its reliability.
Create a Dockerfile
# Start from the official Golang image
FROM golang:1.20-alpine AS builder
# Set environment variables
ENV GO111MODULE=on
ENV CGO_ENABLED=0
# Set working directory
WORKDIR /app
# Copy go.mod and go.sum
COPY go.mod go.sum ./
# Download dependencies
RUN go mod download
# Copy the source code
COPY . .
# Build the application
RUN go build -o registry-app .
# Start a new stage from scratch
FROM alpine:latest
# Set working directory
WORKDIR /root/
# Copy the binary from the builder
COPY --from=builder /app/registry-app .
# Copy any necessary files (e.g., config files)
COPY --from=builder /app/.env .
# Expose port
EXPOSE 8080
# Run the executable
CMD ["./registry-app"]
Build and Run the Docker Image
# Build the Docker image
docker build -t registry-app:latest .
# Run the Docker container
docker run -d -p 8080:8080 --env-file .env registry-app:latest
Create Deployment and Service Manifests
deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: registry-app
spec:
replicas: 3
selector:
matchLabels:
app: registry-app
template:
metadata:
labels:
app: registry-app
spec:
containers:
- name: registry-app
image: registry-app:latest
ports:
- containerPort: 8080
envFrom:
- configMapRef:
name: registry-app-config
- secretRef:
name: registry-app-secrets
service.yaml
apiVersion: v1
kind: Service
metadata:
name: registry-app-service
spec:
selector:
app: registry-app
ports:
- protocol: TCP
port: 80
targetPort: 8080
type: LoadBalancer
Deploy to Kubernetes
# Apply ConfigMaps and Secrets first
kubectl apply -f configmap.yaml
kubectl apply -f secrets.yaml
# Deploy the application
kubectl apply -f deployment.yaml
kubectl apply -f service.yaml
Set Up Prometheus
Deploy Prometheus in your Kubernetes cluster and configure it to scrape metrics from your application.
Set Up Grafana
Deploy Grafana and configure it to visualize metrics from Prometheus.
Integrate Prometheus Metrics
Use the promhttp
handler in your Gin server to expose metrics.
import (
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/client_golang/prometheus/promhttp"
)
// Define metrics
var (
queryCounter = prometheus.NewCounterVec(
prometheus.CounterOpts{
Name: "user_queries_total",
Help: "Total number of user queries received",
},
[]string{"action"},
)
)
func init() {
// Register metrics
prometheus.MustRegister(queryCounter)
}
func main() {
// Existing setup...
// Define routes
router.POST("/query", func(c *gin.Context) {
// Increment counter based on action
// Assume action is extracted from intent
queryCounter.WithLabelValues("handle_query").Inc()
// Existing query handling...
})
// Expose metrics
router.GET("/metrics", gin.WrapH(promhttp.Handler()))
// Start server
if err := router.Run(":8080"); err != nil {
log.Fatalf("Failed to run server: %v", err)
}
}
User Input
{
"user_name": "alice",
"query": "What is the status of the _middleware-infrastructure service?"
}
Assistant Processing
- Receive Request: The
/query
endpoint receives the user's request. - Extract Intent: The chatbot uses OpenAI's API to parse the intent, identifying that the user wants to know the status of a specific service.
- Database Query: It queries PostgreSQL to retrieve the status of
_middleware-infrastructure
. - Generate Response: Formats the response based on the retrieved data.
- Log Interaction: Saves the interaction details in the
interactions
table. - Respond to User: Sends back the status information to the user.
Assistant Response
{
"response": "The status of Cdaprod/_middleware-infrastructure is active."
}
Automate your build, test, and deployment processes using CI/CD pipelines.
Example with GitHub Actions
.github/workflows/ci-cd.yaml
name: CI/CD Pipeline
on:
push:
branches:
- main
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkout@v2
- name: Set up Go
uses: actions/setup-go@v2
with:
go-version: 1.20
- name: Install Dependencies
run: go mod download
- name: Run Tests
run: go test ./...
- name: Build Docker Image
run: docker build -t registry-app:latest .
- name: Push to Docker Hub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Push Image
run: docker push registry-app:latest
deploy:
needs: build
runs-on: ubuntu-latest
steps:
- name: Deploy to Kubernetes
uses: azure/setup-kubectl@v1
with:
version: 'v1.20.0'
- run: kubectl apply -f deployment.yaml
- run: kubectl apply -f service.yaml
Secrets Configuration
Ensure you set the necessary secrets (DOCKER_USERNAME
, DOCKER_PASSWORD
, etc.) in your GitHub repository settings.
To further strengthen your AI assistant and registry system, consider implementing the following:
- API Security: Use JWT tokens or OAuth2 for securing your API endpoints.
- Role-Based Access Control (RBAC): Define roles and permissions to control access to different functionalities.
Example: JWT Authentication Middleware
package middleware
import (
"net/http"
"strings"
"github.com/gin-gonic/gin"
"github.com/dgrijalva/jwt-go"
)
func AuthMiddleware(secret string) gin.HandlerFunc {
return func(c *gin.Context) {
authHeader := c.GetHeader("Authorization")
if authHeader == "" {
c.JSON(http.StatusUnauthorized, gin.H{"error": "Authorization header required"})
c.Abort()
return
}
tokenString := strings.TrimPrefix(authHeader, "Bearer ")
token, err := jwt.Parse(tokenString, func(token *jwt.Token) (interface{}, error) {
// Validate the algorithm
if _, ok := token.Method.(*jwt.SigningMethodHMAC); !ok {
return nil, fmt.Errorf("unexpected signing method")
}
return []byte(secret), nil
})
if err != nil || !token.Valid {
c.JSON(http.StatusUnauthorized, gin.H{"error": "Invalid token"})
c.Abort()
return
}
c.Next()
}
}
Apply Middleware to Routes
router.Use(middleware.AuthMiddleware(os.Getenv("JWT_SECRET")))
Prevent abuse by limiting the number of requests a user can make in a given time frame.
Implement Rate Limiting Using Gin Middleware
package middleware
import (
"time"
"github.com/gin-gonic/gin"
"golang.org/x/time/rate"
)
func RateLimiter(r rate.Limit, b int) gin.HandlerFunc {
limiter := rate.NewLimiter(r, b)
return func(c *gin.Context) {
if !limiter.Allow() {
c.JSON(429, gin.H{"error": "Too many requests"})
c.Abort()
return
}
c.Next()
}
}
Apply Rate Limiting to Routes
router.POST("/query", middleware.RateLimiter(1, 5), func(c *gin.Context) {
// Handler code
})
Ensure that incoming data conforms to expected formats to prevent errors and security vulnerabilities.
Example Using Gin's Binding and Validation
type AddRegistryItemRequest struct {
ID string `json:"id" binding:"required,uuid"`
Name string `json:"name" binding:"required"`
Type string `json:"type" binding:"required"`
Status string `json:"status" binding:"required"`
Path string `json:"path" binding:"required,url"`
Enabled bool `json:"enabled"`
HasDockerfile bool `json:"has_dockerfile"`
Metadata models.RegistryMetadata `json:"metadata" binding:"required"`
}
router.POST("/add", func(c *gin.Context) {
var req AddRegistryItemRequest
if err := c.ShouldBindJSON(&req); err != nil {
c.JSON(400, gin.H{"error": err.Error()})
return
}
// Convert request to RegistryItem
item := models.RegistryItem{
ID: req.ID,
Name: req.Name,
Type: req.Type,
Status: req.Status,
Path: req.Path,
Enabled: req.Enabled,
HasDockerfile: req.HasDockerfile,
Metadata: req.Metadata,
CreatedAt: time.Now(),
LastUpdated: time.Now(),
}
// Save to PostgreSQL and Elasticsearch...
})
Support multiple languages to cater to a diverse user base.
Example: Integrate with a Translation Service
You can integrate with services like Google Translate API or Microsoft Translator to translate user queries and AI responses.
func (cb *Chatbot) TranslateText(text, targetLang string) (string, error) {
// Implement translation logic using an external API
}
By following this comprehensive guide, you've successfully adapted the LangGraph and Graphiti-based AI assistant to a Go-centric architecture without relying on Neo4j. Your system now leverages PostgreSQL for data storage, Elasticsearch for advanced search capabilities, and OpenAI's API for AI-driven responses. Additionally, you've incorporated best practices for robustness, scalability, security, and continuous improvement.
- Prototype and Testing: Implement the core functionalities and test them thoroughly.
- User Interface: Develop a frontend interface (e.g., web dashboard) to interact with the AI assistant.
- Advanced AI Features: Enhance the AI assistant with more sophisticated natural language understanding and context management.
- Documentation: Create comprehensive documentation for your system to facilitate maintenance and onboarding.
- Feedback Mechanism: Implement ways to collect and analyze user feedback to continuously improve the assistant.
Feel free to reach out if you need further assistance or have specific questions regarding any part of the implementation!