Created
December 14, 2010 22:57
-
-
Save Cellane/741283 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| \documentclass[]{article} | |
| \usepackage{fontspec} | |
| \usepackage{tikz} | |
| \usetikzlibrary{intersections} | |
| \begin{document} | |
| \begin{tikzpicture} | |
| [scale=3,line cap=round, | |
| axes/.style=, | |
| important line/.style={very thick}, | |
| information text/.style={rounded corners,fill=red!10,inner sep=1ex}] | |
| \def\costhirty{0.8660256} | |
| \colorlet{anglecolor}{green!50!black} | |
| \colorlet{sincolor}{red} | |
| \colorlet{tancolor}{orange!80!black} | |
| \colorlet{coscolor}{blue} | |
| \draw[help lines,step=0.5cm] (-1.4,-1.4) grid (1.4,1.4); | |
| \draw (0,0) circle (1cm); | |
| \begin{scope}[axes] | |
| \draw[->] (-1.5,0) -- (1.5,0) node[right] {$x$} coordinate (x axis); | |
| \draw[->] (0,-1.5) -- (0,1.5) node[above] {$y$} coordinate (y axis); | |
| \foreach \x/\xtext in {-1, -.5/-\frac{1}{2}, 1} | |
| \draw[xshift=\x cm] (0pt,1pt) -- (0pt,-1pt) node[below,fill=white] {$\xtext$}; | |
| \foreach \y/\ytext in {-1, -.5/-\frac{1}{2}, .5/\frac{1}{2}, 1} | |
| \draw[yshift=\y cm] (1pt,0pt) -- (-1pt,0pt) node[left,fill=white] {$\ytext$}; | |
| \filldraw[fill=green!20,draw=anglecolor] (0,0) -- (3mm,0pt) arc (0:30:3mm); | |
| \draw (15:2mm) node[anglecolor] {$\alpha$}; | |
| \draw[important line,sincolor] | |
| (30:1cm) -- node[left=1pt,fill=white] {$\sin \alpha$} (30:1cm |- x axis); | |
| \draw[important line,coscolor] | |
| (30:1cm |- x axis) -- node[below=2pt,fill=white] {$\cos \alpha$} (0,0); | |
| \path [name path=upward line] (1,0) -- (1,1); | |
| \path [name path=sloped line] (0,0) -- (30:1.5cm); | |
| \draw [name intersections={of=upward line and sloped line, by=t}] | |
| [very thick,orange] (1,0) -- node[right=1pt,fill=white] | |
| {$\displaystyle \tan \alpha \color{black}= | |
| \frac{{\color{red}\sin \alpha}}{\color{blue}\cos \alpha}$} (t); | |
| \draw (0,0) -- (t); | |
| \draw[xshift=-1.075cm,yshift=-2.1cm] | |
| node[right,text width=6cm,information text] { | |
| The {\color{anglecolor} angle $\alpha$} is $30^\circ$ in the | |
| example ($\pi/6$ in radians). The {\color{sincolor}sine of | |
| $\alpha$}, which is the height of the red line, is | |
| \[ | |
| {\color{sincolor} \sin \alpha} = 1/2. | |
| \] | |
| By the Theorem of Pythagoras… | |
| }; | |
| \end{scope} | |
| \end{tikzpicture} | |
| \end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment