Created
January 30, 2017 17:09
-
-
Save ChadTaljaardt/bc9f1ac6031b2e146d8d0b3df58db2e7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# | |
# Copyright (c) 2016 Matthew Earl | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included | |
# in all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | |
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN | |
# NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR | |
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE | |
# USE OR OTHER DEALINGS IN THE SOFTWARE. | |
""" | |
Routines for training the network. | |
""" | |
__all__ = ( | |
'train', | |
) | |
import functools | |
import glob | |
import itertools | |
import multiprocessing | |
import random | |
import sys | |
import time | |
import cv2 | |
import numpy | |
import tensorflow as tf | |
import common | |
import gen | |
import model | |
def code_to_vec(p, code): | |
def char_to_vec(c): | |
y = numpy.zeros((len(common.CHARS),)) | |
y[common.CHARS.index(c)] = 1.0 | |
return y | |
c = numpy.vstack([char_to_vec(c) for c in code]) | |
return numpy.concatenate([[1. if p else 0], c.flatten()]) | |
def read_data(img_glob): | |
for fname in sorted(glob.glob(img_glob)): | |
im = cv2.imread(fname)[:, :, 0].astype(numpy.float32) / 255. | |
code = fname.split("/")[1][9:16] | |
p = fname.split("/")[1][17] == '1' | |
yield im, code_to_vec(p, code) | |
def unzip(b): | |
xs, ys = zip(*b) | |
xs = numpy.array(xs) | |
ys = numpy.array(ys) | |
return xs, ys | |
def batch(it, batch_size): | |
out = [] | |
for x in it: | |
out.append(x) | |
if len(out) == batch_size: | |
yield out | |
out = [] | |
if out: | |
yield out | |
def mpgen(f): | |
def main(q, args, kwargs): | |
try: | |
for item in f(*args, **kwargs): | |
q.put(item) | |
finally: | |
q.close() | |
@functools.wraps(f) | |
def wrapped(*args, **kwargs): | |
q = multiprocessing.Queue(3) | |
proc = multiprocessing.Process(target=main, | |
args=(q, args, kwargs)) | |
proc.start() | |
try: | |
while True: | |
item = q.get() | |
yield item | |
finally: | |
proc.terminate() | |
proc.join() | |
return wrapped | |
@mpgen | |
def read_batches(batch_size): | |
g = gen.generate_ims() | |
def gen_vecs(): | |
for im, c, p in itertools.islice(g, batch_size): | |
yield im, code_to_vec(p, c) | |
while True: | |
yield unzip(gen_vecs()) | |
def get_loss(y, y_): | |
# Calculate the loss from digits being incorrect. Don't count loss from | |
# digits that are in non-present plates. | |
digits_loss = tf.nn.softmax_cross_entropy_with_logits(labels=(tf.reshape(y[:, 1:],[-1, len(common.CHARS)])),logits=(tf.reshape(y_[:, 1:],[-1, len(common.CHARS)]))) | |
digits_loss = tf.reshape(digits_loss, [-1, 7]) | |
digits_loss = tf.reduce_sum(digits_loss, 1) | |
digits_loss *= (y_[:, 0] != 0) | |
digits_loss = tf.reduce_sum(digits_loss) | |
# Calculate the loss from presence indicator being wrong. | |
presence_loss = tf.nn.sigmoid_cross_entropy_with_logits( | |
y[:, :1], y_[:, :1]) | |
presence_loss = 7 * tf.reduce_sum(presence_loss) | |
return digits_loss, presence_loss, digits_loss + presence_loss | |
def train(learn_rate, report_steps, batch_size, initial_weights=None): | |
""" | |
Train the network. | |
The function operates interactively: Progress is reported on stdout, and | |
training ceases upon `KeyboardInterrupt` at which point the learned weights | |
are saved to `weights.npz`, and also returned. | |
:param learn_rate: | |
Learning rate to use. | |
:param report_steps: | |
Every `report_steps` batches a progress report is printed. | |
:param batch_size: | |
The size of the batches used for training. | |
:param initial_weights: | |
(Optional.) Weights to initialize the network with. | |
:return: | |
The learned network weights. | |
""" | |
x, y, params = model.get_training_model() | |
y_ = tf.placeholder(tf.float32, [None, 7 * len(common.CHARS) + 1]) | |
digits_loss, presence_loss, loss = get_loss(y, y_) | |
train_step = tf.train.AdamOptimizer(learn_rate).minimize(loss) | |
best = tf.argmax(tf.reshape(y[:, 1:], [-1, 7, len(common.CHARS)]), 2) | |
correct = tf.argmax(tf.reshape(y_[:, 1:], [-1, 7, len(common.CHARS)]), 2) | |
if initial_weights is not None: | |
assert len(params) == len(initial_weights) | |
assign_ops = [w.assign(v) for w, v in zip(params, initial_weights)] | |
init = tf.initialize_all_variables() | |
def vec_to_plate(v): | |
return "".join(common.CHARS[i] for i in v) | |
def do_report(): | |
r = sess.run([best, | |
correct, | |
tf.greater(y[:, 0], 0), | |
y_[:, 0], | |
digits_loss, | |
presence_loss, | |
loss], | |
feed_dict={x: test_xs, y_: test_ys}) | |
num_correct = numpy.sum( | |
numpy.logical_or( | |
numpy.all(r[0] == r[1], axis=1), | |
numpy.logical_and(r[2] < 0.5, | |
r[3] < 0.5))) | |
r_short = (r[0][:190], r[1][:190], r[2][:190], r[3][:190]) | |
for b, c, pb, pc in zip(*r_short): | |
print "{} {} <-> {} {}".format(vec_to_plate(c), pc, | |
vec_to_plate(b), float(pb)) | |
num_p_correct = numpy.sum(r[2] == r[3]) | |
print ("B{:3d} {:2.02f}% {:02.02f}% loss: {} " | |
"(digits: {}, presence: {}) |{}|").format( | |
batch_idx, | |
100. * num_correct / (len(r[0])), | |
100. * num_p_correct / len(r[2]), | |
r[6], | |
r[4], | |
r[5], | |
"".join("X "[numpy.array_equal(b, c) or (not pb and not pc)] | |
for b, c, pb, pc in zip(*r_short))) | |
def do_batch(): | |
sess.run(train_step, | |
feed_dict={x: batch_xs, y_: batch_ys}) | |
if batch_idx % report_steps == 0: | |
do_report() | |
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95) | |
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: | |
sess.run(init) | |
if initial_weights is not None: | |
sess.run(assign_ops) | |
test_xs, test_ys = unzip(list(read_data("test/*.png"))[:50]) | |
try: | |
last_batch_idx = 0 | |
last_batch_time = time.time() | |
batch_iter = enumerate(read_batches(batch_size)) | |
for batch_idx, (batch_xs, batch_ys) in batch_iter: | |
do_batch() | |
if batch_idx % report_steps == 0: | |
batch_time = time.time() | |
if last_batch_idx != batch_idx: | |
print "time for 60 batches {}".format( | |
60 * (last_batch_time - batch_time) / | |
(last_batch_idx - batch_idx)) | |
last_batch_idx = batch_idx | |
last_batch_time = batch_time | |
except KeyboardInterrupt: | |
last_weights = [p.eval() for p in params] | |
numpy.savez("weights.npz", *last_weights) | |
return last_weights | |
if __name__ == "__main__": | |
if len(sys.argv) > 1: | |
f = numpy.load(sys.argv[1]) | |
initial_weights = [f[n] for n in sorted(f.files, | |
key=lambda s: int(s[4:]))] | |
else: | |
initial_weights = None | |
train(learn_rate=0.001, | |
report_steps=20, | |
batch_size=50, | |
initial_weights=initial_weights) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment