Created
December 23, 2016 20:07
-
-
Save ChanChar/4a0edc5e208b620c138cdee861fbeb14 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import argparse | |
import os.path | |
import re | |
import sys | |
import tarfile | |
import numpy as np | |
from six.moves import urllib | |
import tensorflow as tf | |
FLAGS = None | |
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' # pylint: disable=line-too-long | |
class NodeLookup(object): | |
def __init__(self, label_lookup_path=None, uid_lookup_path=None): | |
if not label_lookup_path: | |
label_lookup_path = os.path.join( | |
FLAGS.model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt') | |
if not uid_lookup_path: | |
uid_lookup_path = os.path.join( | |
FLAGS.model_dir, 'imagenet_synset_to_human_label_map.txt') | |
self.node_lookup = self.load(label_lookup_path, uid_lookup_path) | |
def load(self, label_lookup_path, uid_lookup_path): | |
"""Loads a human readable English name for each softmax node. | |
Args: | |
label_lookup_path: string UID to integer node ID. | |
uid_lookup_path: string UID to human-readable string. | |
Returns: | |
dict from integer node ID to human-readable string. | |
""" | |
if not tf.gfile.Exists(uid_lookup_path): | |
tf.logging.fatal('File does not exist %s', uid_lookup_path) | |
if not tf.gfile.Exists(label_lookup_path): | |
tf.logging.fatal('File does not exist %s', label_lookup_path) | |
# Loads mapping from string UID to human-readable string | |
proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines() | |
uid_to_human = {} | |
p = re.compile(r'[n\d]*[ \S,]*') | |
for line in proto_as_ascii_lines: | |
parsed_items = p.findall(line) | |
uid = parsed_items[0] | |
human_string = parsed_items[2] | |
uid_to_human[uid] = human_string | |
# Loads mapping from string UID to integer node ID. | |
node_id_to_uid = {} | |
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines() | |
for line in proto_as_ascii: | |
if line.startswith(' target_class:'): | |
target_class = int(line.split(': ')[1]) | |
if line.startswith(' target_class_string:'): | |
target_class_string = line.split(': ')[1] | |
node_id_to_uid[target_class] = target_class_string[1:-2] | |
# Loads the final mapping of integer node ID to human-readable string | |
node_id_to_name = {} | |
for key, val in node_id_to_uid.items(): | |
if val not in uid_to_human: | |
tf.logging.fatal('Failed to locate: %s', val) | |
name = uid_to_human[val] | |
node_id_to_name[key] = name | |
return node_id_to_name | |
def id_to_string(self, node_id): | |
if node_id not in self.node_lookup: | |
return '' | |
return self.node_lookup[node_id] | |
def create_graph(): | |
"""Creates a graph from saved GraphDef file and returns a saver.""" | |
# Creates graph from saved graph_def.pb. | |
with tf.gfile.FastGFile(os.path.join( | |
FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(f.read()) | |
_ = tf.import_graph_def(graph_def, name='') | |
def run_inference_on_image(image): | |
"""Runs inference on an image. | |
Args: | |
image: Image file name. | |
Returns: | |
Nothing | |
""" | |
if not tf.gfile.Exists(image): | |
tf.logging.fatal('File does not exist %s', image) | |
image_data = tf.gfile.FastGFile(image, 'rb').read() | |
# Creates graph from saved GraphDef. | |
create_graph() | |
with tf.Session() as sess: | |
# Some useful tensors: | |
# 'softmax:0': A tensor containing the normalized prediction across | |
# 1000 labels. | |
# 'pool_3:0': A tensor containing the next-to-last layer containing 2048 | |
# float description of the image. | |
# 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG | |
# encoding of the image. | |
# Runs the softmax tensor by feeding the image_data as input to the graph. | |
softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') | |
predictions = sess.run(softmax_tensor, | |
{'DecodeJpeg/contents:0': image_data}) | |
predictions = np.squeeze(predictions) | |
# Creates node ID --> English string lookup. | |
node_lookup = NodeLookup() | |
top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1] | |
for node_id in top_k: | |
human_string = node_lookup.id_to_string(node_id) | |
score = predictions[node_id] | |
print('%s (score = %.5f)' % (human_string, score)) | |
def maybe_download_and_extract(): | |
"""Download and extract model tar file.""" | |
dest_directory = FLAGS.model_dir | |
if not os.path.exists(dest_directory): | |
os.makedirs(dest_directory) | |
filename = DATA_URL.split('/')[-1] | |
filepath = os.path.join(dest_directory, filename) | |
if not os.path.exists(filepath): | |
def _progress(count, block_size, total_size): | |
sys.stdout.write('\r>> Downloading %s %.1f%%' % ( | |
filename, float(count * block_size) / float(total_size) * 100.0)) | |
sys.stdout.flush() | |
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) | |
print() | |
statinfo = os.stat(filepath) | |
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') | |
tarfile.open(filepath, 'r:gz').extractall(dest_directory) | |
def main(_): | |
maybe_download_and_extract() | |
image = (FLAGS.image_file if FLAGS.image_file else | |
os.path.join(FLAGS.model_dir, 'cropped_panda.jpg')) | |
run_inference_on_image(image) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
# classify_image_graph_def.pb: | |
# Binary representation of the GraphDef protocol buffer. | |
# imagenet_synset_to_human_label_map.txt: | |
# Map from synset ID to a human readable string. | |
# imagenet_2012_challenge_label_map_proto.pbtxt: | |
# Text representation of a protocol buffer mapping a label to synset ID. | |
parser.add_argument( | |
'--model_dir', | |
type=str, | |
default='/tmp/imagenet', | |
help="""\ | |
Path to classify_image_graph_def.pb, | |
imagenet_synset_to_human_label_map.txt, and | |
imagenet_2012_challenge_label_map_proto.pbtxt.\ | |
""" | |
) | |
parser.add_argument( | |
'--image_file', | |
type=str, | |
default='', | |
help='Absolute path to image file.' | |
) | |
parser.add_argument( | |
'--num_top_predictions', | |
type=int, | |
default=5, | |
help='Display this many predictions.' | |
) | |
FLAGS, unparsed = parser.parse_known_args() | |
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment