Skip to content

Instantly share code, notes, and snippets.

@Cheers3985
Last active November 15, 2022 15:05
Show Gist options
  • Save Cheers3985/10e113ffce1d5657450c32ce52430386 to your computer and use it in GitHub Desktop.
Save Cheers3985/10e113ffce1d5657450c32ce52430386 to your computer and use it in GitHub Desktop.
[pandas.concat] 纵向合并多个dataframe #pandas.concat #pandas
# pandas.concat 实现竖向的拼接
import pandas as pd
df1=pd.DataFrame([10,12,13])
df2=pd.DataFrame([22,33,44,55])
df3=pd.DataFrame([90,94])
pd.concat([df1,df2,df3],ignore_index=True) # 纵向组合,注意此时没有设定列名。此时拼接只有一列
# --------concat 多列进行拼接---------
import pandas as pd
df1=pd.DataFrame([10,12,13],columns=['1'])
df2=pd.DataFrame([22,33,44,55],columns=['2'])
df3=pd.DataFrame([90,94],columns=['3'])
df = pd.concat([df1,df2,df3],ignore_index=True,)
df
# 此时按照有3列,结果如下
1 2 3
0 10.0 NaN NaN
1 12.0 NaN NaN
2 13.0 NaN NaN
3 NaN 22.0 NaN
4 NaN 33.0 NaN
5 NaN 44.0 NaN
6 NaN 55.0 NaN
7 NaN NaN 90.0
8 NaN NaN 94.0
参考资料:
https://notebook.community/xlbaojun/Note-jupyter/05%E5%85%B6%E4%BB%96/pandas%E6%96%87%E6%A1%A3-zh-master/%E6%95%B0%E6%8D%AE%E5%90%88%E5%B9%B6%E3%80%81%E8%BF%9E%E6%8E%A5%E5%92%8C%E6%8B%BC%E6%8E%A5-Merge,%20join,%20and%20concat
# 重命名为一个列名,并且忽略index
df = pd.Dataframe(columns=['datetime','datetime_nano',f'{self.code}.last_price])
df_file.columns = df.columns
df = pd.concat([df,df_file],ignore_index=True)
# 这是股票高频数据本地获取的逻辑
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment