Last active
January 26, 2017 03:50
-
-
Save Chen-tao/1a5f8e1fc25c8da8dd825c2f8745be5f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//https://leetcode.com/problems/sqrtx/ | |
public int mySqrt(int x) { | |
if (x == 0) return 0; | |
double last = 0; | |
double res = 1; | |
while (res != last) | |
{ | |
last = res; | |
res = (res + x / res) / 2; | |
} | |
return (int) res; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
为了方便理解,就先以本题为例:
计算x2 = n的解,令f(x)=x2-n,相当于求解f(x)=0的解,如左图所示。
首先取x0,如果x0不是解,做一个经过(x0,f(x0))这个点的切线,与x轴的交点为x1。
同样的道理,如果x1不是解,做一个经过(x1,f(x1))这个点的切线,与x轴的交点为x2。
以此类推。
以这样的方式得到的xi会无限趋近于f(x)=0的解。
判断xi是否是f(x)=0的解有两种方法:
一是直接计算f(xi)的值判断是否为0,二是判断前后两个解xi和xi-1是否无限接近。
经过(xi, f(xi))这个点的切线方程为f(x) = f(xi) + f’(xi)(x - xi),其中f'(x)为f(x)的导数,本题中为2x。令切线方程等于0,即可求出xi+1=xi - f(xi) / f'(xi)。
继续化简,xi+1=xi - (xi2 - n) / (2xi) = xi - xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2。
有了迭代公式,程序就好写了。关于牛顿迭代法,可以参考wikipedia以及百度百科。