Last active
May 14, 2023 09:45
-
-
Save Chillee/a8d2070b1b7b3f97d8c87bac3c366f8e to your computer and use it in GitHub Desktop.
lora_example.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.utils.parametrize as parametrize | |
from torch.utils._pytree import tree_map | |
class LoraTensor(object): | |
def __init__(self, weights, A, B): | |
self.weights = weights | |
self.A = A | |
self.B = B | |
def __repr__(self): | |
return f"LoraTensor(weight={self.weights}, A={self.A}, B={self.B})" | |
def tensor(self): | |
return self.weights + self.A @ self.B | |
@classmethod | |
def __torch_function__(cls, func, types, args=(), kwargs=None): | |
if kwargs is None: | |
kwargs = {} | |
def unwrap(e): | |
return e.tensor() if isinstance(e, LoraTensor) else e | |
if func == torch.nn.functional.linear and isinstance(args[1], LoraTensor): | |
orig_weight, A, B = (args[1].weights, args[1].A, args[1].B) | |
lora_part = A @ (B @ args[0]) | |
return lora_part + func(args[0], orig_weight, args[2]) | |
else: | |
args, kwargs = tree_map(unwrap, (args, kwargs)) | |
return func(*args, **kwargs) | |
class LoraParametrization(nn.Module): | |
def __init__(self, A, B): | |
super().__init__() | |
self.A = torch.nn.Parameter(A) | |
self.B = torch.nn.Parameter(B) | |
def forward(self, W): | |
return LoraTensor(W, self.A, self.B) | |
class Model(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
# bias is False just for simplicity | |
self.layer = torch.nn.Linear(8, 8, bias=False) | |
def forward(self, x): | |
return self.layer(x).relu() | |
inp = torch.randn(8, 8) | |
model = Model() | |
model.layer.weight.data.zero_() | |
out = model(inp) | |
model.layer.weight.requires_grad_(False) | |
parametrize.register_parametrization(model.layer, "weight", LoraParametrization(torch.ones(model.layer.weight.shape[0], 1), torch.ones(1, model.layer.weight.shape[1])), unsafe=True) | |
optim = torch.optim.SGD([param for param in model.parameters() if param.requires_grad], lr=0.1) | |
out = model(torch.randn(8, 8)) | |
out.sum().backward() | |
optim.step() | |
print([(key, param.grad) for key, param in model.named_parameters() if param.requires_grad]) | |
print([(key, param) for key, param in model.named_parameters()]) |
Author
Chillee
commented
May 3, 2023
Hi Horace, I use similar tensor based implementation during inference to serve different weight adapters in a single batch. Very useful when serving personalized adapters for each customer with a common base model.
Do you think there's benefit (mainly in terms of cost or speed) in using Tensor implementation during training as well?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment