Last active
February 22, 2025 17:13
-
-
Save Chillee/afc7eda51be08c2d40f44f15e4df1161 to your computer and use it in GitHub Desktop.
Merge Attention
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.nn.attention.flex_attention import create_block_mask, flex_attention | |
torch.set_default_device('cuda') | |
q, k, v = [torch.randn(8, 8, 1024, 64, requires_grad=True) for _ in range(3)] | |
causal_mask = create_block_mask(lambda b, h, q_idx, kv_idx: q_idx >= kv_idx, None, None, 1024, 1024) | |
uncausal_mask = create_block_mask(lambda b, h, q_idx, kv_idx: q_idx < kv_idx, None, None, 1024, 1024) | |
ref_out = flex_attention(q, k, v) | |
causal_out, causal_lse = flex_attention(q, k, v, block_mask=causal_mask, return_lse=True) | |
uncausal_out, uncausal_lse = flex_attention(q, k, v, block_mask=uncausal_mask, return_lse=True) | |
# merge_attention(*attention(q, k1, v1), *attention(q, k2, v2)) == attention(q, cat(k1, k2), cat(v1, v2)) | |
def merge_attention(a, lse_a, b, lse_b): | |
max_lse = torch.maximum(lse_a, lse_b) | |
lse_a = torch.exp(lse_a - max_lse) | |
lse_b = torch.exp(lse_b - max_lse) | |
out = ((a * lse_a[..., None] + b * lse_b[..., None]) / (lse_a + lse_b)[..., None]) | |
return out | |
merge_out = merge_attention(causal_out, causal_lse, uncausal_out, uncausal_lse) | |
assert (ref_out - merge_out).abs().max() < 1e-5 | |
ref_out.sum().backward() | |
ref_q_grad = q.grad | |
q.grad = None | |
merge_out.sum().backward() | |
assert (q.grad - ref_q_grad).abs().max() < 1e-5 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment