Last active
November 24, 2021 10:53
-
-
Save Chris-hughes10/8ca0e42fce16aff33166d4b4c153e86b to your computer and use it in GitHub Desktop.
pytorch-accelerated_blog_mnist_quickstart
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# this example is taken from | |
# https://github.com/Chris-hughes10/pytorch-accelerated/blob/main/examples/train_mnist.py | |
import os | |
from torch import nn, optim | |
from torch.utils.data import random_split | |
from torchvision import transforms | |
from torchvision.datasets import MNIST | |
from pytorch_accelerated import Trainer | |
class MNISTModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.main = nn.Sequential( | |
nn.Linear(in_features=784, out_features=128), | |
nn.ReLU(), | |
nn.Linear(in_features=128, out_features=64), | |
nn.ReLU(), | |
nn.Linear(in_features=64, out_features=10), | |
) | |
def forward(self, x): | |
return self.main(x.view(x.shape[0], -1)) | |
def main(): | |
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor()) | |
train_dataset, validation_dataset, test_dataset = random_split( | |
dataset, [50000, 5000, 5000] | |
) | |
model = MNISTModel() | |
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) | |
loss_func = nn.CrossEntropyLoss() | |
trainer = Trainer( | |
model, | |
loss_func=loss_func, | |
optimizer=optimizer, | |
) | |
trainer.train( | |
train_dataset=train_dataset, | |
eval_dataset=validation_dataset, | |
num_epochs=2, | |
per_device_batch_size=32, | |
) | |
trainer.evaluate( | |
dataset=test_dataset, | |
per_device_batch_size=64, | |
) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment