Created
December 9, 2021 07:39
-
-
Save Chris-hughes10/dc2a77d7e78699bda07fe78dfdd1f0dc to your computer and use it in GitHub Desktop.
Recommender blog: matrix factorization model
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
class MfDotBias(nn.Module): | |
def __init__( | |
self, n_factors, n_users, n_items, ratings_range=None, use_biases=True | |
): | |
super().__init__() | |
self.bias = use_biases | |
self.y_range = ratings_range | |
self.user_embedding = nn.Embedding(n_users+1, n_factors, padding_idx=0) | |
self.item_embedding = nn.Embedding(n_items+1, n_factors, padding_idx=0) | |
if use_biases: | |
self.user_bias = nn.Embedding(n_users+1, 1, padding_idx=0) | |
self.item_bias = nn.Embedding(n_items+1, 1, padding_idx=0) | |
def forward(self, inputs): | |
users, items = inputs | |
dot = self.user_embedding(users) * self.item_embedding(items) | |
result = dot.sum(1) | |
if self.bias: | |
result = ( | |
result + self.user_bias(users).squeeze() + self.item_bias(items).squeeze() | |
) | |
if self.y_range is None: | |
return result | |
else: | |
return ( | |
torch.sigmoid(result) * (self.y_range[1] - self.y_range[0]) | |
+ self.y_range[0] | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment