Last active
December 28, 2021 09:42
-
-
Save Chris-hughes10/e88e261f912108bdbd3142cdf24df36c to your computer and use it in GitHub Desktop.
Effdet_blog_dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from torch.utils.data import Dataset | |
class EfficientDetDataset(Dataset): | |
def __init__( | |
self, dataset_adaptor, transforms=get_valid_transforms() | |
): | |
self.ds = dataset_adaptor | |
self.transforms = transforms | |
def __getitem__(self, index): | |
( | |
image, | |
pascal_bboxes, | |
class_labels, | |
image_id, | |
) = self.ds.get_image_and_labels_by_idx(index) | |
sample = { | |
"image": np.array(image, dtype=np.float32), | |
"bboxes": pascal_bboxes, | |
"labels": class_labels, | |
} | |
sample = self.transforms(**sample) | |
sample["bboxes"] = np.array(sample["bboxes"]) | |
image = sample["image"] | |
labels = sample["labels"] | |
_, new_h, new_w = image.shape | |
sample["bboxes"][:, [0, 1, 2, 3]] = sample["bboxes"][ | |
:, [1, 0, 3, 2] | |
] # convert to yxyx | |
target = { | |
"bboxes": torch.as_tensor(sample["bboxes"], dtype=torch.float32), | |
"labels": torch.as_tensor(labels), | |
"image_id": torch.tensor([image_id]), | |
"img_size": (new_h, new_w), | |
"img_scale": torch.tensor([1.0]), | |
} | |
return image, target, image_id | |
def __len__(self): | |
return len(self.ds) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment