Created
January 27, 2022 16:58
-
-
Save Chris-hughes10/f5ff0b9100990a72dd62f29b2d93a803 to your computer and use it in GitHub Desktop.
timm blog - Training script using timm and PyTorch-accelerated
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
from pathlib import Path | |
import timm | |
import timm.data | |
import timm.loss | |
import timm.optim | |
import timm.utils | |
import torch | |
import torchmetrics | |
from timm.scheduler import CosineLRScheduler | |
from pytorch_accelerated.callbacks import SaveBestModelCallback | |
from pytorch_accelerated.trainer import Trainer, DEFAULT_CALLBACKS | |
def create_datasets(image_size, data_mean, data_std, train_path, val_path): | |
train_transforms = timm.data.create_transform( | |
input_size=image_size, | |
is_training=True, | |
mean=data_mean, | |
std=data_std, | |
auto_augment="rand-m7-mstd0.5-inc1", | |
) | |
eval_transforms = timm.data.create_transform( | |
input_size=image_size, mean=data_mean, std=data_std | |
) | |
train_dataset = timm.data.dataset.ImageDataset( | |
train_path, transform=train_transforms | |
) | |
eval_dataset = timm.data.dataset.ImageDataset(val_path, transform=eval_transforms) | |
return train_dataset, eval_dataset | |
class TimmMixupTrainer(Trainer): | |
def __init__(self, eval_loss_fn, mixup_args, num_classes, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.eval_loss_fn = eval_loss_fn | |
self.num_updates = None | |
self.mixup_fn = timm.data.Mixup(**mixup_args) | |
self.accuracy = torchmetrics.Accuracy(num_classes=num_classes) | |
self.ema_accuracy = torchmetrics.Accuracy(num_classes=num_classes) | |
self.ema_model = None | |
def create_scheduler(self): | |
return timm.scheduler.CosineLRScheduler( | |
self.optimizer, | |
t_initial=self.run_config.num_epochs, | |
cycle_decay=0.5, | |
lr_min=1e-6, | |
t_in_epochs=True, | |
warmup_t=3, | |
warmup_lr_init=1e-4, | |
cycle_limit=1, | |
) | |
def training_run_start(self): | |
# Model EMA requires the model without a DDP wrapper and before sync batchnorm conversion | |
self.ema_model = timm.utils.ModelEmaV2( | |
self._accelerator.unwrap_model(self.model), decay=0.9 | |
) | |
if self.run_config.is_distributed: | |
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model) | |
def train_epoch_start(self): | |
super().train_epoch_start() | |
self.num_updates = self.run_history.current_epoch * len(self._train_dataloader) | |
def calculate_train_batch_loss(self, batch): | |
xb, yb = batch | |
mixup_xb, mixup_yb = self.mixup_fn(xb, yb) | |
return super().calculate_train_batch_loss((mixup_xb, mixup_yb)) | |
def train_epoch_end( | |
self, | |
): | |
self.ema_model.update(self.model) | |
self.ema_model.eval() | |
if hasattr(self.optimizer, "sync_lookahead"): | |
self.optimizer.sync_lookahead() | |
def scheduler_step(self): | |
self.num_updates += 1 | |
if self.scheduler is not None: | |
self.scheduler.step_update(num_updates=self.num_updates) | |
def calculate_eval_batch_loss(self, batch): | |
with torch.no_grad(): | |
xb, yb = batch | |
outputs = self.model(xb) | |
val_loss = self.eval_loss_fn(outputs, yb) | |
self.accuracy.update(outputs.argmax(-1), yb) | |
ema_model_preds = self.ema_model.module(xb).argmax(-1) | |
self.ema_accuracy.update(ema_model_preds, yb) | |
return {"loss": val_loss, "model_outputs": outputs, "batch_size": xb.size(0)} | |
def eval_epoch_end(self): | |
super().eval_epoch_end() | |
if self.scheduler is not None: | |
self.scheduler.step(self.run_history.current_epoch + 1) | |
self.run_history.update_metric("accuracy", self.accuracy.compute().cpu()) | |
self.run_history.update_metric( | |
"ema_model_accuracy", self.ema_accuracy.compute().cpu() | |
) | |
self.accuracy.reset() | |
self.ema_accuracy.reset() | |
def main(data_path): | |
# Set training arguments, hardcoded here for clarity | |
image_size = (224, 224) | |
lr = 5e-3 | |
smoothing = 0.1 | |
mixup = 0.2 | |
cutmix = 1.0 | |
batch_size = 32 | |
bce_target_thresh = 0.2 | |
num_epochs = 40 | |
data_path = Path(data_path) | |
train_path = data_path / "train" | |
val_path = data_path / "val" | |
num_classes = len(list(train_path.iterdir())) | |
mixup_args = dict( | |
mixup_alpha=mixup, | |
cutmix_alpha=cutmix, | |
label_smoothing=smoothing, | |
num_classes=num_classes, | |
) | |
# Create model using timm | |
model = timm.create_model( | |
"resnet50d", pretrained=False, num_classes=num_classes, drop_path_rate=0.05 | |
) | |
# Load data config associated with the model to use in data augmentation pipeline | |
data_config = timm.data.resolve_data_config({}, model=model, verbose=True) | |
data_mean = data_config["mean"] | |
data_std = data_config["std"] | |
# Create training and validation datasets | |
train_dataset, eval_dataset = create_datasets( | |
train_path=train_path, | |
val_path=val_path, | |
image_size=image_size, | |
data_mean=data_mean, | |
data_std=data_std, | |
) | |
# Create optimizer | |
optimizer = timm.optim.create_optimizer_v2( | |
model, opt="lookahead_AdamW", lr=lr, weight_decay=0.01 | |
) | |
# As we are using Mixup, we can use BCE during training and CE for evaluation | |
train_loss_fn = timm.loss.BinaryCrossEntropy( | |
target_threshold=bce_target_thresh, smoothing=smoothing | |
) | |
validate_loss_fn = torch.nn.CrossEntropyLoss() | |
# Create trainer and start training | |
trainer = TimmMixupTrainer( | |
model=model, | |
optimizer=optimizer, | |
loss_func=train_loss_fn, | |
eval_loss_fn=validate_loss_fn, | |
mixup_args=mixup_args, | |
num_classes=num_classes, | |
callbacks=[ | |
*DEFAULT_CALLBACKS, | |
SaveBestModelCallback(watch_metric="accuracy", greater_is_better=True), | |
], | |
) | |
trainer.train( | |
per_device_batch_size=batch_size, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
num_epochs=num_epochs, | |
create_scheduler_fn=trainer.create_scheduler, | |
) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Simple example of training script using timm.") | |
parser.add_argument("--data_dir", required=True, help="The data folder on disk.") | |
args = parser.parse_args() | |
main(args.data_dir) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment