Created
May 1, 2016 20:12
-
-
Save ChrisHayduk/ab912d2464b4c370dcff5b5896482bf8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder() | |
.seed(123) | |
.iterations(iterations) | |
.regularization(true).l2(.0005) //Arbitrary | |
.learningRate(0.005) | |
.weightInit(WeightInit.XAVIER) | |
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue) | |
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) | |
.updater(Updater.NESTEROVS).momentum(0.5) | |
.list(6) | |
.layer(0, new ConvolutionLayer.Builder(5,5) | |
.nIn(11*200).nOut(20).activation("identity").padding(2,2).stride(1,1).dropOut(0.5).build() | |
) | |
.layer(1,new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.AVG) | |
.kernelSize(4,4).stride(1,1).build() | |
) | |
.layer(2, new ConvolutionLayer.Builder(5,5) | |
.nOut(20).activation("identity").padding(2,2).stride(1,1).dropOut(0.5).build() | |
) | |
.layer(3, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.AVG) | |
.kernelSize(2,2).stride(1,1).build() | |
) | |
.layer(4, new DenseLayer.Builder().activation("relu").nOut(120).build()) | |
.layer(5, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT).nOut(num_people).activation("softmax").build()) | |
.backprop(true).pretrain(false); | |
new ConvolutionLayerSetup(builder,11,200,1); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment