Created
April 19, 2021 20:15
-
-
Save ChrisHughes24/4d65410d145cf9cdb686ed831843d48f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tactic | |
inductive word₀ | |
| blank : word₀ | |
| concat : word₀ → word₀ → word₀ | |
open word₀ | |
infixr ` □ `:80 := concat | |
@[simp] lemma ne_concat_self_left : ∀ u v, u ≠ u □ v | |
| blank v h := word₀.no_confusion h | |
| (u □ u') v h := ne_concat_self_left u u' (by injection h) | |
@[simp] lemma ne_concat_self_right : ∀ u v, v ≠ u □ v | |
| u blank h := word₀.no_confusion h | |
| u (v □ v') h := ne_concat_self_right v v' (by injection h) | |
@[simp] lemma concat_ne_self_right (u v : word₀) : u □ v ≠ v := | |
(ne_concat_self_right _ _).symm | |
@[simp] lemma concat_ne_self_left (u v : word₀) : u □ v ≠ u := | |
(ne_concat_self_left _ _).symm | |
inductive hom₀ : word₀ → word₀ → Sort* | |
| α_hom : ∀ (u v w : word₀), hom₀ ((u □ v) □ w) (u □ (v □ w)) | |
| α_inv : ∀ (u v w : word₀), hom₀ (u □ (v □ w)) ((u □ v) □ w) | |
| tensor_id : ∀ {u v} (w), hom₀ u v → hom₀ (u □ w) (v □ w) | |
| id_tensor : ∀ (u) {v w}, hom₀ v w → hom₀ (u □ v) (u □ w) | |
inductive hom₀.is_directed : ∀ {v w}, hom₀ v w → Prop | |
| α : ∀ {u v w}, hom₀.is_directed (hom₀.α_hom u v w) | |
| tensor_id : ∀ (u) {v w} (s : hom₀ v w), hom₀.is_directed s → | |
hom₀.is_directed (hom₀.tensor_id u s) | |
| id_tensor : ∀ {u v} (w) (s : hom₀ u v), hom₀.is_directed s → | |
hom₀.is_directed (hom₀.id_tensor w s) | |
lemma hom₀.ne {u v} (s : hom₀ u v) : u ≠ v := | |
begin | |
induction s, | |
{ simp }, | |
{ simp }, | |
{ simp * }, | |
{ simp * } | |
end | |
lemma hom₀.subsingleton : | |
∀ {u v u' v'} (hu : u = u') (hv : v = v') | |
(s : hom₀ u v) (s' : hom₀ u' v'), s.is_directed → | |
s'.is_directed → s == s' := | |
begin | |
assume u v u' v' hu hv s s' hs hs', | |
induction hs generalizing u' v', | |
{ cases hs', | |
{ simp only at hu hv, | |
rcases hu with ⟨⟨rfl, rfl⟩, rfl⟩, | |
refl }, | |
{ simp only at hu hv, | |
rcases hu with ⟨rfl, rfl⟩, | |
simp * at * }, | |
{ simp only at hu hv, | |
rcases hu with ⟨rfl, rfl⟩, | |
simp * at * } }, | |
{ cases hs', | |
{ simp only at hu hv, | |
rcases hu with ⟨⟨rfl, rfl⟩, rfl⟩, | |
simp * at * }, | |
{ simp only at hu hv, | |
rcases hu with ⟨rfl, rfl⟩, | |
rcases hv with ⟨rfl, _⟩, | |
simp only [heq_iff_eq], | |
rw [← heq_iff_eq], | |
exact hs_ih rfl rfl _ (by assumption) }, | |
{ simp only at hu hv, | |
rcases hu with ⟨rfl, rfl⟩, | |
rcases hv with ⟨rfl, rfl⟩, | |
exact (hom₀.ne hs'_s rfl).elim } }, | |
{ cases hs', | |
{ simp only at hu hv, | |
rcases hu with ⟨⟨rfl, rfl⟩, rfl⟩, | |
simp * at * }, | |
{ simp only at hu hv, | |
rcases hu with ⟨rfl, rfl⟩, | |
rcases hv with ⟨rfl, rfl⟩, | |
exact (hom₀.ne hs'_s rfl).elim }, | |
{ simp only at hu hv, | |
rcases hu with ⟨rfl, rfl⟩, | |
rcases hv with ⟨_, rfl⟩, | |
simp only [heq_iff_eq], | |
rw [← heq_iff_eq], | |
exact hs_ih rfl rfl _ (by assumption) } } | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment