Created
July 23, 2020 15:48
-
-
Save ChrisHughes24/73d40b1b31f07b81cbec47ef88700a7c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import data.dfinsupp | |
import tactic | |
universes u v w | |
variables {ii : Type u} {jj : Type v} [decidable_eq ii] [decidable_eq jj] | |
variables (β : ii → jj → Type w) [Π i j, decidable_eq (β i j)] | |
variables [Π i j, has_zero (β i j)] | |
def to_fun (x : Π₀ (ij : ii × jj), β ij.1 ij.2) : Π₀ i, Π₀ j, β i j := | |
quotient.lift_on x | |
(λ x, ⟦dfinsupp.pre.mk | |
(λ i, show Π₀ j : jj, β i j, | |
from ⟦dfinsupp.pre.mk | |
(λ j, x.to_fun (i, j)) | |
(x.pre_support.map prod.snd) | |
(λ j, (x.3 (i, j)).elim (λ h, or.inl (multiset.mem_map.2 ⟨(i, j), h, rfl⟩)) or.inr)⟧) | |
(x.pre_support.map prod.fst) | |
(λ i, or_iff_not_imp_left.2 $ λ h, dfinsupp.ext $ λ j, (x.3 (i, j)).resolve_left | |
(λ hij, h (multiset.mem_map.2 ⟨(i, j), hij, rfl⟩)))⟧) | |
(λ a b hab, dfinsupp.ext (λ i, dfinsupp.ext (λ j, hab _))) | |
def inv_fun (x : Π₀ i, Π₀ j, β i j) : Π₀ (ij : ii × jj), β ij.1 ij.2 := | |
quotient.lift_on x | |
(λ x, ⟦dfinsupp.pre.mk (λ i : ii × jj, quotient.lift_on (x.1 i.1) | |
(λ x, x.1 i.2) | |
(λ a b hab, hab _)) | |
(x.pre_support.bind (λ i, (quotient.lift_on (x.1 i) | |
(λ x, ((x.pre_support.filter (λ j, x.1 j ≠ 0)).map (λ j, (i, j))).to_finset) | |
(λ a b hab, begin | |
ext p, | |
cases a, cases b, | |
replace hab : a_to_fun = b_to_fun := funext hab, | |
subst hab, | |
cases p with p₁ p₂, | |
simp [and_comm _ (_ = p₂), @and.left_comm _ (_ = p₂)], | |
specialize b_zero p₂, | |
specialize a_zero p₂, | |
tauto, | |
end)).1)) | |
(λ i, or_iff_not_imp_right.2 begin | |
generalize hxi : x.1 i.1 = a, | |
revert hxi, | |
refine quotient.induction_on a (λ a hxi, _), | |
assume h, | |
have h₁ := (a.3 i.2).resolve_right h, | |
have h₂ := (x.3 i.1).resolve_right (λ ha, begin | |
rw [hxi] at ha, | |
exact h ((quotient.exact ha) i.snd), | |
end), | |
simp only [exists_prop, ne.def, multiset.mem_bind], | |
use i.fst, | |
rw [hxi, quotient.lift_on_beta], | |
simp only [multiset.mem_erase_dup, multiset.to_finset_val, | |
multiset.mem_map, multiset.mem_filter], | |
exact ⟨h₂, i.2, ⟨h₁, h⟩, by cases i; refl⟩ | |
end)⟧) | |
(λ a b hab, dfinsupp.ext $ λ i, by unfold_coes; simp [hab i.1]) | |
example : (Π₀ (ij : ii × jj), β ij.1 ij.2) ≃ Π₀ i, Π₀ j, β i j := | |
{ to_fun := to_fun β, | |
inv_fun := inv_fun β, | |
left_inv := λ x, quotient.induction_on x (λ x, dfinsupp.ext (λ i, by cases i; refl)), | |
right_inv := λ x, quotient.induction_on x (λ x, dfinsupp.ext (λ i, dfinsupp.ext (λ j, | |
begin | |
generalize hxi : x.1 i = a, | |
revert hxi, | |
refine quotient.induction_on a (λ a hxi, _), | |
rw [to_fun, inv_fun], | |
unfold_coes, | |
simp, | |
rw [hxi, quotient.lift_on_beta, quotient.lift_on_beta], | |
end))) } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment