Created
July 10, 2020 10:45
-
-
Save ChrisHughes24/84ffdb76b8009134a9f42e7a08a92ac5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import data.nat.digits | |
lemma nat.div_lt_of_le : ∀ {n m k : ℕ} (h0 : n > 0) (h1 : m > 1) (hkn : k ≤ n), k / m < n | |
| 0 m k h0 h1 hkn := absurd h0 dec_trivial | |
| 1 m 0 h0 h1 hkn := by rwa nat.zero_div | |
| 1 m 1 h0 h1 hkn := | |
have ¬ (0 < m ∧ m ≤ 1), from λ h, absurd (@lt_of_lt_of_le ℕ | |
(show preorder ℕ, from @partial_order.to_preorder ℕ (@linear_order.to_partial_order ℕ nat.linear_order)) | |
_ _ _ h1 h.2) dec_trivial, | |
by rw [nat.div_def_aux, dif_neg this]; exact dec_trivial | |
| 1 m (k+2) h0 h1 hkn := absurd hkn dec_trivial | |
| (n+2) m k h0 h1 hkn := begin | |
rw [nat.div_def_aux], | |
cases decidable.em (0 < m ∧ m ≤ k) with h h, | |
{ rw [dif_pos h], | |
refine nat.succ_lt_succ _, | |
refine nat.div_lt_of_le (nat.succ_pos _) h1 _, | |
cases m with m, | |
{ exact absurd h.1 dec_trivial }, | |
{ cases m with m, | |
{ exact absurd h1 dec_trivial }, | |
{ clear h1 h, | |
induction m with m ih, | |
{ cases k with k, | |
{ exact nat.zero_le _ }, | |
{ cases k with k, | |
{ exact nat.zero_le _ }, | |
{ rw [nat.sub_succ, nat.sub_succ, nat.sub_zero, nat.pred_succ, | |
nat.pred_succ], | |
exact @linear_order.le_trans ℕ nat.linear_order _ _ _ | |
(nat.le_succ k) (nat.le_of_succ_le_succ hkn) } } }, | |
{ cases k with k, | |
{ rw [nat.zero_sub], exact nat.zero_le _ }, | |
{ rw [nat.succ_sub_succ], | |
refine @linear_order.le_trans ℕ nat.linear_order _ _ _ _ ih, | |
refine nat.sub_le_sub_right _ _, | |
exact nat.le_succ _ } } } } }, | |
{ rw dif_neg h, | |
exact nat.succ_pos _ } | |
end | |
lemma nat.div_lt_self'' {n m : ℕ} (h0 : n > 0) (hm : m > 1) : n / m < n := | |
nat.div_lt_of_le h0 hm (le_refl _) | |
def f : ℕ → ℕ | |
| n := | |
if h : 0 < n | |
then have n - 1 < n, from nat.sub_lt h zero_lt_one, | |
f (n - 1) | |
else 0 | |
def digits_aux' (b : ℕ) (h : 2 ≤ b) : ℕ → list ℕ | |
| 0 := [] | |
| (n+1) := | |
have (n+1)/b < n+1 := nat.div_lt_self'' (nat.succ_pos _) h, | |
(n+1) % b :: digits_aux' ((n+1)/b) | |
def digits' : ℕ → ℕ → list ℕ | |
| 0 := digits_aux_0 | |
| 1 := digits_aux_1 | |
| (b+2) := digits_aux' (b+2) dec_trivial | |
theorem test (b n : ℕ) : digits' (b+2) (n+1) = (n+1)%(b+2) :: digits' (b+2) ((n+1)/(b+2)) := rfl -- works | |
theorem test' : digits' (0+2) (1+1) = (1+1)%(0+2) :: digits' (0+2) ((1+1)/(0+2)) := rfl |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment