Created
September 7, 2021 21:49
-
-
Save ChrisHughes24/b1826a3422e40302e1700c2390132461 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import data.set.function | |
import data.fintype.basic | |
import data.finset.basic | |
import data.fin | |
import tactic | |
open finset function | |
@[derive fintype, derive decidable_eq] | |
structure cell := (r : fin 9) (c : fin 9) | |
def row (i : fin 9) : finset cell := filter (λ a, a.r = i) univ | |
def col (i : fin 9) : finset cell := filter (λ a, a.c = i) univ | |
def box (i : fin 9) : finset cell := filter (λ a, a.r / 3 = i / 3 ∧ a.c / 3 = i % 3) univ | |
lemma mem_row (a : cell) (i : fin 9) : a ∈ row i ↔ a.r = i := by simp [row] | |
lemma mem_col (a : cell) (i : fin 9) : a ∈ col i ↔ a.c = i := by simp [col] | |
lemma mem_box (a : cell) (i j : fin 3) : | |
a ∈ box i ↔ a.r / 3 = i / 3 ∧ a.c / 3 = i % 3 := by simp [box] | |
def same_row (a : cell) (b : cell) := a.r = b.r | |
def same_col (a : cell) (b : cell) := a.c = b.c | |
def same_box (a : cell) (b : cell) := (a.r / 3) = (b.r / 3) ∧ (a.c / 3) = (b.c / 3) | |
def cell_row (a : cell) : finset cell := row (a.r) | |
def cell_col (a : cell) : finset cell := col (a.c) | |
def cell_box (a : cell) : finset cell := box (3*(a.r / 3) + a.c / 3) | |
def sudoku := cell → fin 9 | |
def row_axiom (s : sudoku) : Prop := ∀ a b : cell, same_row a b → s a = s b → a = b | |
def col_axiom (s : sudoku) : Prop := ∀ a b : cell, same_col a b → s a = s b → a = b | |
def box_axiom (s : sudoku) : Prop := ∀ a b : cell, same_box a b → s a = s b → a = b | |
def normal_sudoku_rules (s : sudoku) : Prop := row_axiom s ∧ col_axiom s ∧ box_axiom s | |
@[simp] lemma card_row : ∀ (i : fin 9), finset.card (row i) = 9 := dec_trivial | |
@[simp] lemma card_col : ∀ (i : fin 9), finset.card (col i) = 9 := dec_trivial | |
@[simp] lemma card_box : ∀ (i : fin 9), finset.card (box i) = 9 := dec_trivial | |
lemma row_injective (s : sudoku) (h_row : row_axiom s) (i : fin 9) : | |
∀ a b ∈ row i, s a = s b → a = b := | |
begin | |
intros a b ha hb h_eq, | |
have h_srow : same_row a b, | |
{ rw mem_row at ha hb, | |
rw ← hb at ha, | |
exact ha | |
}, | |
apply h_row _ _ h_srow h_eq | |
end | |
lemma row_surjective (s : sudoku) (h_row : row_axiom s) (i v : fin 9) : | |
∃ c ∈ (row i), v = s c := | |
finset.surj_on_of_inj_on_of_card_le | |
(λ c (hc : c ∈ row i), s c) | |
(λ _ _, finset.mem_univ _) | |
(row_injective s h_row i) | |
(by simp) | |
_ | |
(mem_univ _) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment