Created
February 27, 2022 13:00
-
-
Save ChrisHughes24/d79e0e8b963880d99c77c68b0f6e1382 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tactic | |
variables (P : Type) [partial_order P] | |
def presheaf : Type := | |
{ s : P → Prop // ∀ a b, a ≤ b → s b → s a } | |
instance : has_coe_to_fun (presheaf P) (λ _, P → Prop) := | |
⟨subtype.val⟩ | |
@[simp] lemma presheaf.coe_mk (s : P → Prop) (hs : ∀ a b, a ≤ b → s b → s a) : | |
@coe_fn (presheaf P) _ _ (⟨s, hs⟩ : presheaf P) = s := rfl | |
instance : partial_order (presheaf P) := | |
{ le := λ A B, ∀ x, A x → B x, | |
le_trans := λ A B C hAB hBC x hAx, hBC _ (hAB _ hAx), | |
le_refl := λ A x, id, | |
le_antisymm := λ A B hAB hBA, subtype.val_injective (funext $ λ x, propext ⟨hAB _, hBA _⟩) } | |
lemma presheaf.le_def {A B : presheaf P} : A ≤ B = ∀ x, A x → B x := rfl | |
instance : has_Inf (presheaf P) := | |
{ Inf := λ s, ⟨λ p, ∀ A : presheaf P, A ∈ s → A p, | |
λ a b hab h A hAs, A.2 _ _ hab (h _ hAs)⟩ } | |
instance : complete_lattice (presheaf P) := | |
complete_lattice_of_Inf _ | |
(λ s, begin | |
split, | |
{ dsimp [Inf, lower_bounds], | |
intros A hAs p h, | |
apply h, | |
exact hAs }, | |
{ dsimp [Inf, upper_bounds, lower_bounds], | |
intros A h p hAp B hBs, | |
apply h, | |
exact hBs, | |
exact hAp } | |
end) | |
lemma infi_def {ι : Sort*} (A : ι → presheaf P) : | |
infi A = ⟨λ p, ∀ i, A i p, λ x y hxy h i, (A i).2 _ y hxy (h i)⟩ := | |
le_antisymm | |
(infi_le_iff.2 (λ B h p hBp i, h i _ hBp)) | |
(le_infi (λ i p h, h _)) | |
variable {P} | |
def yoneda (a : P) : presheaf P := | |
⟨λ b, b ≤ a, λ b c, le_trans⟩ | |
def yoneda_le_iff (A : presheaf P) (p : P) : yoneda p ≤ A ↔ A p := | |
begin | |
simp [yoneda, presheaf.le_def], | |
split, | |
{ intro h, apply h, exact le_rfl }, | |
{ intros h x hxp, | |
apply A.2, | |
apply hxp, | |
exact h } | |
end | |
@[simp] lemma yoneda_mono {a b : P} : yoneda a ≤ yoneda b ↔ a ≤ b := | |
begin | |
rw yoneda_le_iff, refl, | |
end | |
lemma eq_supr (A : presheaf P) : A = ⨆ (p : P) (h : A p), yoneda p := | |
begin | |
apply le_antisymm; simp only [le_supr_iff, supr_le_iff, yoneda_le_iff], | |
{ intros B hB p, | |
exact hB p }, | |
{ exact λ _, id } | |
end | |
variables {A : Type*} [complete_lattice A] (f : P → A) (hf : monotone f) | |
include hf | |
def ump : presheaf P → A := | |
λ A, ⨆ (p : P) (h : A p), f p | |
lemma ump_supr {ι : Sort*} (a : ι → presheaf P) : ump f hf (supr a) = ⨆ i, ump f hf (a i) := | |
begin | |
apply le_antisymm, | |
simp only [ump, le_supr_iff, supr_le_iff], | |
{ intros x hx y hy, | |
} | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment