Created
November 25, 2019 00:29
-
-
Save ChrisRackauckas/56e168271f42ba048c79aac2bd88af4f to your computer and use it in GitHub Desktop.
Animation of neural ordinary differential equations with DiffEqFlux.jl
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using DiffEqFlux, OrdinaryDiffEq, Flux, Plots | |
# Generate data from a real ODE | |
u0 = Float32[2.; 0.]; datasize = 30 | |
tspan = (0.0f0,1.5f0) | |
function trueODEfunc(du,u,p,t) | |
true_A = [-0.1 2.0; -2.0 -0.1] | |
du .= ((u.^3)'true_A)' | |
end | |
t = range(tspan[1],tspan[2],length=datasize) | |
prob = ODEProblem(trueODEfunc,u0,tspan) | |
ode_data = Array(solve(prob,Tsit5(),saveat=t)) | |
# Define a Neural ODE | |
dudt = Chain(x -> x.^3, | |
Dense(2,75,tanh), | |
Dense(75,2)) | |
n_ode(x) = neural_ode(dudt,x,tspan,AutoTsit5(Rosenbrock23(autodiff=false)),saveat=t,reltol=1e-7,abstol=1e-9) | |
function predict_n_ode() | |
n_ode(u0) | |
end | |
loss_n_ode() = sum(abs2,ode_data .- predict_n_ode()) | |
# Train the Neural ODE to match the data | |
data = Iterators.repeated((), 200) | |
cb = function () #callback function to observe training | |
display(loss_n_ode()); cur_pred = Flux.data(predict_n_ode()) | |
p1 = scatter(t,ode_data[1,:],label="data",legend=:bottomright); scatter!(p1,t,cur_pred[1,:],label="prediction") | |
p2 = scatter(t,ode_data[2,:],label="data",legend=:top); scatter!(p2,t,cur_pred[2,:],label="prediction") | |
display(plot(p1,p2,layout=(2,1))) | |
end | |
Flux.train!(loss_n_ode, Flux.params(dudt), data, Nesterov(0.0005), cb = cb) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment