Mix.install(
[
{:evision, "~> 0.1"},
{:kino, "~> 0.7"}
],
system_env: [
# optional, defaults to `true`
# set `EVISION_PREFER_PRECOMPILED` to `false`
# if you prefer `:evision` to be compiled from source
# note that to compile from source, you may need at least 1GB RAM
{"EVISION_PREFER_PRECOMPILED", true},
# optional, defaults to `true`
# set `EVISION_ENABLE_CONTRIB` to `false`
# if you don't need modules from `opencv_contrib`
{"EVISION_ENABLE_CONTRIB", true},
# optional, defaults to `false`
# set `EVISION_ENABLE_CUDA` to `true`
# if you wish to use CUDA related functions
# note that `EVISION_ENABLE_CONTRIB` also has to be `true`
# because cuda related modules come from the `opencv_contrib` repo
{"EVISION_ENABLE_CUDA", false},
# required when
# - `EVISION_ENABLE_CUDA` is `true`
# - and `EVISION_PREFER_PRECOMPILED` is `true`
#
# set `EVISION_CUDA_VERSION` to the version that matches
# your local CUDA runtime version
#
# current available versions are
# - 118
# - 121
{"EVISION_CUDA_VERSION", "118"},
# require for Windows users when
# - `EVISION_ENABLE_CUDA` is `true`
# set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
# CUDA runtime libraries
{"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
]
)
capture = Evision.VideoCapture.videoCapture(0)
face_cascade_path =
Path.join([
:code.priv_dir(:evision),
"share/opencv4/haarcascades/haarcascade_frontalface_default.xml"
])
face_cascade = Evision.CascadeClassifier.cascadeClassifier(face_cascade_path)
frame = Evision.VideoCapture.read(capture) |> Evision.resize({1280, 720})
grey = Evision.cvtColor(frame, Evision.Constant.cv_COLOR_BGR2GRAY())
faces =
Evision.CascadeClassifier.detectMultiScale(
face_cascade,
grey,
scaleFactor: 1.8,
minNeighbors: 4
)
# Draw a red rectangle over each detected face
mat =
Enum.reduce(faces, frame, fn {x, y, w, h}, mat ->
Evision.rectangle(mat, {x, y}, {x + w, y + h}, {0, 0, 255}, thickness: 2)
end)
# Establish a frame
# You can have as many of these as you want
# They could even contain form elements
out = Kino.Frame.new()
Kino.render(out)
Enum.each(0..10, fn x ->
# Update the frame while the code runs
# This could be something like adding data to a chart, for example
Kino.Frame.append(out, x)
:timer.sleep(100)
end)
Kino.Frame.render(out, "Done")
out = Kino.Frame.new()
Kino.render(out)
for _ <- 0..100 do
frame =
Evision.VideoCapture.read(capture)
|> Evision.resize({640, 360})
grey_frame = Evision.cvtColor(frame, Evision.Constant.cv_COLOR_BGR2GRAY())
faces =
Evision.CascadeClassifier.detectMultiScale(
face_cascade,
grey_frame,
scaleFactor: 1.8,
minNeighbors: 4
)
# Draw a red rectangle over each detected face
mat =
Enum.reduce(faces, frame, fn {x, y, w, h}, mat ->
Evision.rectangle(mat, {x, y}, {x + w, y + h}, {0, 0, 255}, thickness: 2)
end)
target_x = 300
target_y = 300
# Find the center of all detected faces
{center_x, center_y} =
if Enum.empty?(faces) do
{2, [h, w]} = Evision.Mat.size(frame)
{w / 2, h / 2}
else
x = Enum.sum(Enum.map(faces, fn {x, _y, w, _h} -> x + w / 2 end)) / length(faces)
y = Enum.sum(Enum.map(faces, fn {_x, y, _w, h} -> y + h / 2 end)) / length(faces)
{x, y}
end
# Find a 300x300 rectangle to crop to
# Ideally, centered around the face
bounding_box = {
max(0, round(center_x - target_x / 2)),
max(0, round(center_y - target_y / 2)),
target_x,
target_y
}
# Crop the image down to the 300x300 box
mat = Evision.Mat.roi(mat, bounding_box)
Kino.Frame.render(out, mat)
end
:ok
Cool