Last active
March 6, 2024 17:41
-
-
Save ChristopheBelpaire/80f46604df1da56aeb3c26e8a563605a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Mix.install([{:axon, "~> 0.6"}, {:nx, "~> 0.7"}, {:exla, "~> 0.7"}, {:stb_image, "0.6.6"}, {:kino, "~> 0.8"}]) | |
defmodule CatsAndDogs do | |
def pipeline(paths, batch_size, target_height, target_width) do | |
paths | |
|> Enum.shuffle() | |
|> Task.async_stream(&parse_image/1) | |
|> Stream.filter(fn | |
{:ok, {%StbImage{shape: {_, _, 3}}, _}} -> true | |
_ -> false end) | |
|> Stream.map(&to_tensors(&1, target_height, target_width)) | |
|> Stream.chunk_every(batch_size, batch_size, :discard) | |
|> Stream.map(fn chunks -> | |
{img_chunk, label_chunk} = Enum.unzip(chunks) | |
{Nx.stack(img_chunk), Nx.stack(label_chunk)} | |
end) | |
end | |
defp parse_image(path) do | |
label = if String.contains?(path, "cat"), do: 0, else: 1 | |
case StbImage.read_file(path) do | |
{:ok, img} -> {img, label} | |
_error -> :error | |
end | |
end | |
defp to_tensors({:ok, {img, label}}, target_height, target_width) do img_tensor = | |
img | |
|> StbImage.resize(target_height, target_width) | |
|> StbImage.to_nx() | |
|> Nx.divide(255) | |
label_tensor = Nx.tensor([label]) | |
{img_tensor, label_tensor} | |
end | |
end | |
{test_paths, train_paths} = Path.wildcard("/Users/christophebelpaire/perso/machine-learning-in-elixir/train-2/*.jpg") | |
|> Enum.shuffle() | |
|> Enum.split(1000) | |
target_height = 96 | |
target_width = 96 | |
batch_size = 32 | |
train_pipeline = CatsAndDogs.pipeline( | |
train_paths, batch_size, target_height, target_width | |
) | |
_test_pipeline = CatsAndDogs.pipeline( | |
test_paths, batch_size, target_height, target_width | |
) | |
cnn_model = | |
Axon.input("images", shape: {nil, 96, 96, 3}) | |
|> Axon.conv(32, kernel_size: {3, 3}, activation: :relu, padding: :same) | |
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2]) | |
|> Axon.conv(64, kernel_size: {3, 3}, activation: :relu, padding: :same) | |
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2]) | |
|> Axon.conv(128, kernel_size: {3, 3}, activation: :relu, padding: :same) | |
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2]) | |
|> Axon.flatten() | |
|> Axon.dense(128, activation: :relu) | |
|> Axon.dense(1, activation: :sigmoid) | |
_cnn_trained_model_state = | |
cnn_model | |
|> Axon.Loop.trainer(:binary_cross_entropy, :adam) | |
|> Axon.Loop.metric(:accuracy) | |
|> Axon.Loop.run(train_pipeline, %{}, epochs: 5, compiler: EXLA) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment