Created
May 31, 2020 19:58
-
-
Save ChristopherDaigle/4185f9f4ac8b975e671c9d3950dbdbab to your computer and use it in GitHub Desktop.
predict_revenue
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.linear_model import LinearRegression, Ridge | |
from sklearn.model_selection import train_test_split | |
X = df_1.drop(['revenue', 'above_ave_rev_yr', 'original_language', 'original_title', 'overview', 'release_date', 'status', 'tagline', 'title'], axis=1) | |
y = df_1['revenue'] | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) | |
lm_model = LinearRegression(normalize=True) | |
r_model = Ridge(normalize=True) | |
lm_model.fit(X_train, y_train) | |
r_model.fit(X_train, y_train) | |
print('Linear Regression Train R2: {}'.format(lm_model.score(X_train, y_train))) | |
print('Ridge Train R2: {}'.format(r_model.score(X_train, y_train))) | |
lm_preds = lm_model.predict(X_test) | |
r_preds = r_model.predict(X_test) | |
print('Linear Regression Test R2: {}'.format(lm_model.score(X_test, y_test))) | |
print('Ridge Test R2: {}'.format(r_model.score(X_test, y_test))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment