Created
June 1, 2020 02:24
-
-
Save ChristopherDaigle/ad35ff07e72e6d4fc1df80ad7ec42860 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV | |
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier | |
from sklearn.ensemble import GradientBoostingClassifier | |
from sklearn.neighbors import KNeighborsClassifier | |
from sklearn.metrics import fbeta_score, accuracy_score | |
models = {'log_model': LogisticRegression(random_state=0), | |
'log_cv_model': LogisticRegressionCV(), | |
'ab_model':AdaBoostClassifier(random_state=0), | |
'rf_model': RandomForestClassifier(random_state=0), | |
'grad_model': GradientBoostingClassifier(random_state=0), | |
'knn_model': KNeighborsClassifier()} | |
X = df_final.drop(['revenue', 'above_ave_rev_yr', 'release_date'], axis=1) | |
y = df_final['above_ave_rev_yr'] | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0, stratify=y) | |
results = {} | |
for model in models.keys(): | |
name = models[model].__class__.__name__ | |
models[model].fit(X_train, y_train) | |
pred_train = models[model].predict(X_train) | |
pred_test = models[model].predict(X_test) | |
acc_train = accuracy_score(y_train, pred_train) | |
acc_test = accuracy_score(y_test, pred_test) | |
f_train = fbeta_score(y_train, pred_train, beta=1) | |
f_test = fbeta_score(y_test, pred_test, beta=1) | |
results[name] = {'pred_train': pred_train, | |
'pred_test': pred_test, | |
'acc_train': acc_train, | |
'acc_test': acc_test, | |
'f_train': f_train, | |
'f_test': f_test} | |
for model in results.keys(): | |
print(model) | |
print("="*len(model)) | |
print('\tTrain Accuracy: {:.4}'.format(results[model]['acc_train'])) | |
print('\tTest Accuracy: {:.4}'.format(results[model]['acc_test'])) | |
print('\tTrain F1: {:.4}'.format(results[model]['f_train'])) | |
print('\tTest F1: {:.4}'.format(results[model]['f_test'])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment