Last active
April 17, 2025 10:16
-
-
Save ChristopherKing42/d8c9fde0869ec5c8feae71714e069214 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
--Roughly based on https://github.com/Gabriel439/Haskell-Morte-Library/blob/master/src/Morte/Core.hs by Gabriel Gonzalez et al. | |
data Expr = Star | Box | Var Int | Lam Int Expr Expr | Pi Int Expr Expr | App Expr Expr deriving (Show, Eq) | |
subst v e (Var v') | v == v' = e | |
subst v e (Lam v' ta b ) | v == v' = Lam v' (subst v e ta) b | |
subst v e (Lam v' ta b ) = Lam v' (subst v e ta) (subst v e b ) | |
subst v e (Pi v' ta tb) | v == v' = Pi v' (subst v e ta) tb | |
subst v e (Pi v' ta tb) = Pi v' (subst v e ta) (subst v e tb) | |
subst v e (App f a ) = App (subst v e f ) (subst v e a ) | |
subst v e e' = e' | |
free v e = e /= subst v (Var $ v + 1) e | |
normalize (Lam v ta b) = case normalize b of | |
App vb (Var v') | v == v' && not (free v vb) -> vb --Eta reduce | |
b' -> Lam v (normalize ta) b' | |
normalize (Pi v ta tb) = Pi v (normalize ta) (normalize tb) | |
normalize (App f a) = case normalize f of | |
Lam v _ b -> subst v (normalize a) b | |
f' -> App f' (normalize a) | |
normalize c = c | |
e `equiv` e' = igo (normalize e) (normalize e') (-1) where | |
igo (Lam v ta b) (Lam v' ta' b') n = igo ta ta' n && igo (subst v (Var n) b) (subst v' (Var n) b') (pred n) | |
igo (Pi v ta tb) (Pi v' ta' tb') n = igo ta ta' n && igo (subst v (Var n) tb) (subst v' (Var n) tb') (pred n) | |
igo (App f a) (App f' a') n = igo f f' n && igo a a' n | |
igo c c' n = c == c' | |
typeIn _ Star = return Box | |
typeIn _ Box = Nothing | |
typeIn ctx (Var v) = lookup v ctx | |
typeIn ctx (Lam v ta b) = do | |
tb <- typeIn ((v, ta):ctx) b | |
let tf = Pi v ta tb | |
_ttf <- typeIn ctx tf | |
return tf | |
typeIn ctx (Pi v ta tb) = do | |
tta <- typeIn ctx ta | |
ttb <- typeIn ((v, ta):ctx) tb | |
case (tta, ttb) of | |
(Star, Star) -> return Star | |
(Box , Star) -> return Star | |
(Star, Box ) -> return Box | |
(Box , Box ) -> return Box | |
_ -> Nothing | |
typeIn ctx (App f a) = do | |
(v, ta, tb) <- case typeIn ctx f of | |
Just (Pi v ta tb) -> return (v, ta, tb) | |
_ -> Nothing | |
ta' <- typeIn ctx a | |
if ta `equiv` ta' | |
then return $ subst v a tb | |
else Nothing | |
typeOf = typeIn [] | |
wellTyped e = typeOf e /= Nothing |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment