Skip to content

Instantly share code, notes, and snippets.

@CiprianSpiridon
Last active June 9, 2025 10:43
Show Gist options
  • Save CiprianSpiridon/1522014585e504773401554cc59d6b4e to your computer and use it in GitHub Desktop.
Save CiprianSpiridon/1522014585e504773401554cc59d6b4e to your computer and use it in GitHub Desktop.
ulpi-prd-list

ULPI API - Product Requirements Document

ULPI: Universal Language & Prompt Intelligence

Table of Contents

  1. Executive Summary
  2. System Overview
  3. Core Features & Implementation Phases
  4. Detailed API Specifications
  5. API Standards
  6. Database Schemas
  7. Queue Jobs
  8. Client Integration Patterns
  9. Performance Requirements
  10. Security Requirements
  11. Success Metrics
  12. MVP Definition
  13. Technical Decisions
  14. Knowledge Management System
  15. Supported Knowledge Types
  16. Release Timeline

Executive Summary

ULPI: One Hotkey, Any App, Every LLM Knows Everything You Know

ULPI (Universal Language & Prompt Intelligence) is an AI memory layer that transforms how professionals interact with Large Language Models, making every AI assistant instantly aware of your expertise, team knowledge, and industry best practices.

The Problem

Knowledge workers waste 10-20 hours monthly rewriting the same prompts, onboarding team members, and searching for past solutions. Every time they switch between ChatGPT, Claude, or any LLM, they start from scratch—no memory of their expertise, team standards, or past decisions.

Our Solution: ULPI

ULPI is an AI memory layer that sits between professionals and any LLM. One hotkey (⌥⌘M) in any app instantly injects:

  • Your expertise: Personal style, past work, proven approaches
  • Team knowledge: Company playbooks, decisions, collective wisdom
  • Industry intelligence: Best practices, frameworks, competitor insights
  • Role-specific patterns: Whether you're coding, writing, analyzing, or selling

How It Works

  1. Hit ⌥⌘M anywhere → Email, ChatGPT, VS Code, Notion, Slack, anywhere
  2. ULPI detects context → Coding? Writing? Financial model? Marketing copy?
  3. Auto-injects intelligence → Your expertise + team knowledge + industry best practices
  4. Any LLM responds perfectly → Like your smartest colleague who knows everything

Universal Use Cases

Role Without ULPI With ULPI
Developer "How do I implement auth?" ⌥⌘M → Complete auth system using your stack
Product Manager "Write a PRD for..." ⌥⌘M → PRD in your format with your metrics
Marketer "Create campaign copy" ⌥⌘M → On-brand copy in your voice
Finance "Build a revenue model" ⌥⌘M → Model with your assumptions
Sales "Draft a proposal" ⌥⌘M → Proposal with your pricing & terms
Customer Success "Respond to complaint" ⌥⌘M → Response in company tone

The Magic: Works Everywhere

  • In ChatGPT: Your personal + team knowledge auto-injected
  • In Email: Responses match your communication style
  • In Code Editors: Technical patterns + team conventions
  • In Google Docs: Company voice + industry standards
  • In Slack: Quick answers with full context
  • Anywhere with text: One hotkey, infinite intelligence

Market Opportunity

  • 180M+ professionals use AI daily across all industries
  • $500B productivity loss from context switching and knowledge silos
  • Every role needs this: Developers, PMs, marketers, finance, sales, support
  • Enterprise demand: "We need consistent AI outputs across 10,000 employees"
  • Platform agnostic: Works with ChatGPT, Claude, Gemini, and future LLMs

Business Model

  • Free: 50 enhancements/month, basic features (user provides API keys)
  • Starter: $19/month - 500 enhancements, 100 memories
  • Pro: $49/month - Unlimited enhancements, 1000 memories, BYOK option
  • Team: $39/seat/month - Everything + team sharing (min 3 seats, BYOK required)
  • Enterprise: Custom pricing with private deployment

BYOK (Bring Your Own Key): Users can connect their own LLM API keys to eliminate our API costs

Free Tier Capacity Planning

Stage Timeline Budget Free Users Cost/User Infrastructure
MVP Month 1-3 $2K/mo 500-1,000 $0.30 Minimal (free tiers)
Growth Month 4-6 $8K/mo 5,000-10,000 $0.15 Scaled cloud
Scale Month 7-12 $10K/mo 20,000-30,000 $0.10 Auto-scaling
Profitable Year 2+ Self-sustaining 50,000-100,000 $0.05 Enterprise

Free User Limits:

  • 50 enhancements/month
  • 10 memories maximum
  • 30-day memory expiration
  • Must provide own API keys
  • No team sharing

Conversion Targets:

  • Months 1-3: 10% → 50 paid users
  • Months 4-6: 5% → 250 paid users
  • Months 7-12: 3% → 600 paid users

Why Now?

  • AI adoption exploded: 180M+ ChatGPT users but 73% report "context fatigue"
  • LLM proliferation: GPT-4, Claude 3, Gemini, Llama - users need one interface
  • Enterprise demand: Companies desperately need consistent AI outputs

Competitive Advantage

  • Universal: Works with ALL LLMs, not locked to one provider
  • Instant: One hotkey in any app - no copy/paste/switching
  • Intelligent: Learns from your team's actual work, not generic training

Traction & Ask

  • MVP: 3-month timeline, Laravel backend ready
  • Early Interest:
    • 3 dev teams interested in pilot (50 users)
    • 2 product teams exploring adoption (20 users)
    • 100+ professionals on waitlist
    • 5 companies requested enterprise demos
  • Path to Break-Even:
    • Month 6: 150 paid users = $8K MRR (near break-even)
    • Month 12: 300 paid users = $16K MRR (profitable)
    • Conservative 5% free-to-paid conversion
  • Seeking: $500K pre-seed to:
    • Finish MVP and launch (3 months)
    • Run 6-month pilot program
    • Reach break-even without additional funding
  • Use of funds:
    • 40% product development
    • 30% LLM/infrastructure costs
    • 20% user acquisition
    • 10% operations
flowchart LR
    A["👥 Knowledge Worker<br/>Developer, PM, Writer, etc."] --> B{"🎯 Trigger Options"}
    B --> B1["⌨️ Global Hotkey<br/>YouTube scripts, PRDs, etc."]
    B --> B2["💬 Chat Interface"]
    B --> B3["🔌 App Integration<br/>VS Code, Notion, Figma, etc."]
    B --> B4["🎙️ Voice Command<br/>Hotkey to speak intent"]
    B --> B5["🤖 Auto-trigger<br/>on context/app change"]

    B1 --> C["🧠 Memory Control Plane MCP"]
    B2 --> C
    B3 --> C
    B4 --> C
    B5 --> C

    C --> C1["🔍 Classifies context & domain"]
    C --> C2["📚 Injects your voice:<br/>Personal / Team / Domain"]
    C --> C3["🧩 Adds preferences + patterns<br/>across all LLMs"]

    C1 --> D["🤖 Any LLM<br/>Claude, GPT-4, Gemini, etc."]
    C2 --> D
    C3 --> D

    D --> E["✅ Consistent YOU across all models"]
    E --> F["🪄 Final Output:<br/>Auto-paste, insert, or clipboard"]

    subgraph MemoryStore["Your Digital Voice"]
        C2a["🧍 Personal Voice<br/>Writing style, preferences"]
        C2b["👥 Team Voice<br/>Company tone, processes"]
        C2c["🏷️ Domain Voice<br/>Laravel, Figma, Marketing, etc."]
    end

    C2 --> C2a
    C2 --> C2b
    C2 --> C2c
Loading

1. System Overview

1.1 Core Architecture

graph TD
    A[ULPI System] --> B[API Layer - Laravel]
    A --> C[Data Layer]
    A --> D[Processing Layer]
    A --> E[Intelligence Layer]
    
    B --> B1[REST APIs]
    B --> B2[WebSocket/SSE]
    B --> B3[Webhook Handlers]
    
    C --> C1[MySQL<br/>Users/Auth]
    C --> C2[MongoDB<br/>Knowledge/Memories]
    C --> C3[Qdrant<br/>Vector Search]
    C --> C4[Redis<br/>Cache/Queue]
    
    D --> D1[Horizon Queue Workers]
    D --> D2[Knowledge Extractors]
    D --> D3[Embedding Pipeline]
    
    E --> E1[LLM Services<br/>OpenAI/Anthropic/Gemini]
    E --> E2[Context Analyzer]
    E --> E3[Knowledge Graph]
Loading

1.2 Architecture Components

  • ULPI API: RESTful API service (Laravel 10.x)
  • Vector Store: Qdrant for semantic search
  • Databases: MySQL (users/auth), MongoDB (knowledge)
  • Queue System: Redis + Horizon for async processing
  • LLM Providers: OpenAI, Anthropic, Google Gemini
  • Cache Layer: Redis for performance optimization

1.3 Client Types

  • Desktop Apps: VS Code extension, JetBrains plugin
  • Browser Extension: Chrome/Firefox/Edge
  • Native Apps: macOS menu bar, Windows system tray
  • Web Dashboard: Settings and memory management
  • Mobile SDK: iOS/Android keyboard extensions
  • CLI Tool: Terminal integration

2. Core Features & Implementation Phases

Phase 1: Foundation (Weeks 1-4) ✅

1.1 Authentication & User Management

  • POST /api/auth/register - User registration with email/OAuth
  • POST /api/auth/login - JWT-based authentication
  • POST /api/auth/refresh - Token refresh
  • GET /api/auth/user - Current user profile
  • PUT /api/auth/user - Update user settings
  • POST /api/auth/logout - Invalidate tokens

1.2 Team Management

  • POST /api/teams - Create team
  • GET /api/teams - List user's teams
  • GET /api/teams/{id} - Team details
  • PUT /api/teams/{id} - Update team settings
  • POST /api/teams/{id}/invite - Invite team members
  • POST /api/teams/{id}/members/{userId} - Add/remove members

1.3 Profile Management

  • POST /api/profiles - Create profile (Backend Engineer, PM, etc.)
  • GET /api/profiles - List user's profiles
  • GET /api/profiles/{id} - Profile details
  • PUT /api/profiles/{id} - Update profile
  • DELETE /api/profiles/{id} - Delete profile
  • POST /api/profiles/{id}/activate - Set active profile

Phase 2: Memory System (Weeks 5-8) ✅

2.1 Memory CRUD Operations

  • POST /api/memories - Create memory
    {
      "content": "Always use Repository pattern",
      "domain": "laravel",
      "tags": ["architecture", "patterns"],
      "type": "personal|team|global"
    }
  • GET /api/memories - List memories (paginated, filtered)
  • GET /api/memories/{id} - Get memory details
  • PUT /api/memories/{id} - Update memory
  • DELETE /api/memories/{id} - Soft delete memory
  • POST /api/memories/search - Semantic search memories

2.2 Memory Extraction

  • POST /api/memories/extract - Extract from conversation
  • POST /api/memories/extract/code-review - Extract from PR
  • POST /api/memories/extract/error - Extract from error resolution
  • GET /api/memories/extractions - List extraction history

Phase 3: Context Intelligence (Weeks 9-12) ✅

3.1 Context Analysis

  • POST /api/context/analyze - Analyze current context
    {
      "app": "vscode",
      "file_path": "/app/Jobs/UserJob.php",
      "selected_text": "public function handle()",
      "profile_id": "backend-engineer-profile-id"
    }

3.2 Prompt Enhancement

  • POST /api/enhance - Main enhancement endpoint
    {
      "input": "How do I create a job?",
      "context": {
        "app": "vscode",
        "file": "UserController.php"
      },
      "profile_id": "xxx",
      "mode": "prompt|expert",
      "llm_target": "openai|anthropic|google"
    }
  • POST /api/enhance/stream - SSE streaming enhancement

3.3 Quick Actions

  • GET /api/templates - List quick templates
  • POST /api/templates/apply - Apply template to context

Phase 4: Universal Knowledge Ingestion Platform (Weeks 13-20) ✅

4.1 Multi-Source Content Ingestion

  • POST /api/knowledge/ingest - Universal ingestion endpoint
    {
      "source_type": "repository|video|podcast|blog|forum|slack|confluence|api_docs|course|research_paper|social_media|newsletter|webinar",
      "source_config": {
        "url": "https://www.youtube.com/watch?v=...",
        "authentication": {...},
        "extraction_rules": {...}
      },
      "processing_instructions": {
        "extract_code_samples": true,
        "extract_diagrams": true,
        "transcribe_audio": true,
        "ocr_images": true,
        "extract_comments": true
      },
      "metadata": {
        "author": "Kent C. Dodds",
        "expertise_level": "expert",
        "topics": ["react", "testing"],
        "quality_score": 0.95
      },
      "refresh_strategy": {
        "type": "webhook|polling|manual",
        "frequency": "realtime|daily|weekly",
        "check_updates": true
      }
    }

4.2 Community & Real-time Knowledge

  • POST /api/knowledge/communities/connect - Connect to knowledge communities
    {
      "platform": "stackoverflow|discord|slack|reddit|hackernews",
      "channels": ["laravel", "react-help"],
      "filters": {
        "min_score": 10,
        "verified_answers": true,
        "expert_users": ["taylorotwell", "calebporzio"]
      },
      "capture": ["questions", "solutions", "discussions", "code_snippets"]
    }
  • POST /api/knowledge/streams/subscribe - Subscribe to live knowledge streams
  • GET /api/knowledge/trending - Trending topics and solutions

4.3 Enterprise Knowledge Integration

  • POST /api/knowledge/enterprise/connect - Connect internal systems
    {
      "systems": [
        {
          "type": "confluence",
          "spaces": ["engineering", "product"],
          "sync_private": true
        },
        {
          "type": "jira",
          "projects": ["CORE", "MOBILE"],
          "extract": ["bugs", "postmortems", "specifications"]
        },
        {
          "type": "customer_support",
          "extract": ["solutions", "common_issues", "workarounds"]
        }
      ],
      "privacy": {
        "anonymize_pii": true,
        "access_control": "team_based"
      }
    }

4.4 Multi-Modal Content Processing

  • POST /api/knowledge/process/video - Extract knowledge from video
  • POST /api/knowledge/process/diagram - Extract from diagrams/whiteboards
  • POST /api/knowledge/process/code - Deep code analysis
    {
      "repository": "company/monorepo",
      "analyze": {
        "patterns": true,
        "architecture": true,
        "best_practices": true,
        "anti_patterns": true
      },
      "cross_reference": ["documentation", "pull_requests", "issues"]
    }

4.5 Knowledge Graph & Relationships

  • POST /api/knowledge/graph/connect - Create knowledge relationships
  • GET /api/knowledge/graph/explore - Explore connected concepts
  • POST /api/knowledge/graph/validate - Validate conflicting information
    {
      "concept": "state_management",
      "sources": ["redux_docs", "mobx_docs", "zustand_docs"],
      "resolution_strategy": "compare|synthesize|latest|most_trusted"
    }

4.6 Intelligent Knowledge Curation

  • POST /api/knowledge/curate/auto - AI-powered curation
    {
      "topic": "microservices",
      "depth": "comprehensive|overview|quick_reference",
      "combine_sources": true,
      "remove_outdated": true,
      "skill_level": "beginner|intermediate|expert",
      "output_format": "tutorial|reference|cookbook"
    }
  • GET /api/knowledge/quality/audit - Quality audit of knowledge base
  • POST /api/knowledge/deprecate - Mark outdated knowledge

4.7 Voice Intelligence System

  • POST /api/voices/learn - Learn from any text source
    {
      "sources": [
        {"type": "blog", "url": "sethgodin.com", "posts": 100},
        {"type": "tweets", "handle": "@pmarca", "count": 1000},
        {"type": "books", "author": "Paul Graham", "titles": ["all"]}
      ],
      "analyze": {
        "writing_style": true,
        "thought_patterns": true,
        "vocabulary": true,
        "persuasion_techniques": true
      },
      "create_voice_profile": {
        "name": "Thought Leader PM",
        "combine_with": ["existing_pm_voice"]
      }
    }
  • POST /api/voices/blend - Blend multiple voices
  • GET /api/voices/recommend - Recommend voice for context

Phase 5: Advanced Features (Weeks 21-24) ✅

5.1 Analytics & Insights

  • GET /api/analytics/usage - Usage statistics
  • GET /api/analytics/savings - Time saved metrics
  • GET /api/analytics/popular-memories - Most used memories
  • GET /api/analytics/team-insights - Team patterns

5.2 Integrations

  • GET /api/integrations - List available integrations
  • POST /api/integrations/{type}/connect - Connect integration
  • POST /api/integrations/{type}/webhook - Integration webhooks

5.3 Voice & Hotkey Support

  • POST /api/voice/transcribe - Voice to text
  • POST /api/hotkeys/register - Register global hotkey
  • GET /api/hotkeys - List user's hotkeys

Phase 6: Multi-Role Expansion (Weeks 25-28) ✅

6.1 Role-Specific Knowledge Bases

  • POST /api/roles - Define new professional role
    {
      "name": "CFO",
      "categories": ["financial_planning", "investor_relations", "compliance"],
      "default_voices": ["Fortune500_CFO", "Startup_CFO"],
      "knowledge_sources": ["financial_frameworks", "sec_guidelines"]
    }
  • GET /api/roles - List all supported roles
  • GET /api/roles/{role}/knowledge - Role-specific knowledge

6.2 Industry-Specific Customization

  • POST /api/industries - Add industry vertical
  • GET /api/industries/{id}/terminology - Industry glossary
  • POST /api/industries/{id}/compliance - Add compliance rules

6.3 Cross-Role Intelligence

  • POST /api/enhance/multi-role - Get perspectives from multiple roles
    {
      "input": "Q3 revenue projections",
      "roles": ["CFO", "VP_Sales", "Product_Manager"],
      "output_format": "comparison|synthesis|debate"
    }

3. Detailed API Specifications

3.1 Authentication & User Management

User Registration

POST /api/auth/register

Request:
{
  "email": "[email protected]",
  "password": "secure_password",
  "name": "John Doe",
  "timezone": "America/New_York"
}

Response:
{
  "success": true,
  "data": {
    "user": {
      "id": 1,
      "email": "[email protected]",
      "name": "John Doe"
    },
    "token": "jwt_token",
    "refresh_token": "refresh_token"
  }
}

OAuth Registration

POST /api/auth/oauth/{provider}

  • Providers: google, github, microsoft
  • Handles OAuth flow and creates/links accounts

Profile Management

POST /api/profiles

Request:
{
  "name": "Senior Backend Engineer",
  "description": "Laravel expert with 5+ years experience",
  "settings": {
    "default_llm": "anthropic",
    "auto_inject_domains": ["laravel", "php", "mysql"],
    "enhancement_mode": "expert"
  }
}

Response:
{
  "success": true,
  "data": {
    "id": "prof_abc123",
    "name": "Senior Backend Engineer",
    "is_active": true,
    "created_at": "2024-01-01T10:00:00Z"
  }
}

3.2 Memory System

Create Memory

POST /api/memories

Request:
{
  "content": "Always use Repository pattern for data access in Laravel",
  "type": "personal", // personal|team|global
  "domain": "laravel",
  "tags": ["architecture", "patterns", "best-practices"],
  "context": {
    "source": "code_review",
    "project": "api-v2",
    "confidence": 0.95
  }
}

Response:
{
  "success": true,
  "data": {
    "id": "mem_xyz789",
    "content": "Always use Repository pattern for data access in Laravel",
    "embedding_status": "processing",
    "relevance_score": 0.92
  }
}

Search Memories

POST /api/memories/search

Request:
{
  "query": "laravel repository pattern",
  "filters": {
    "type": ["personal", "team"],
    "domains": ["laravel"],
    "min_confidence": 0.8
  },
  "limit": 10
}

Response:
{
  "success": true,
  "data": {
    "results": [
      {
        "id": "mem_xyz789",
        "content": "Always use Repository pattern...",
        "relevance": 0.94,
        "source": "code_review",
        "used_count": 15
      }
    ],
    "total": 3
  }
}

3.3 Context Intelligence

Context Window Management

Requirements:

  • Dynamic Token Budgeting: Allocate token limits based on LLM model (GPT-4: 128k, Claude: 200k, etc.)
  • Smart Prioritization: Score and rank context by relevance, recency, and usage frequency
  • Hierarchical Injection: Load critical context first, then add optional context if space allows
  • Context Summarization: Auto-summarize lengthy memories when approaching token limits
  • Chunking Strategy: Split long content semantically (by function, section, or paragraph)
  • Fallback Handling: Gracefully degrade when context exceeds limits
  • User Control: Let users set context preferences (prefer recent, prefer personal, etc.)

Token Budget Allocation:

  • User query: 10% (~12k tokens for GPT-4)
  • Relevant memories: 40% (~50k tokens)
  • Team context: 20% (~25k tokens)
  • Domain knowledge: 20% (~25k tokens)
  • System instructions: 10% (~12k tokens)

Analyze Context

POST /api/context/analyze

Request:
{
  "app": "vscode",
  "file_path": "/app/Http/Controllers/UserController.php",
  "file_content": "<?php\nnamespace App\\Http\\Controllers;\n...",
  "cursor_position": 145,
  "recent_files": [
    "/app/Models/User.php",
    "/routes/api.php"
  ],
  "git_branch": "feature/user-api"
}

Response:
{
  "success": true,
  "data": {
    "context": {
      "framework": "laravel",
      "component": "controller",
      "likely_task": "implementing_user_endpoint",
      "relevant_patterns": ["repository", "api_resource"],
      "team_conventions": ["use form requests", "return json responses"]
    }
  }
}

Enhance Prompt

POST /api/enhance

Request:
{
  "input": "How do I create a job?",
  "context": {
    "app": "vscode",
    "file": "UserController.php",
    "project": "laravel-api"
  },
  "profile_id": "prof_abc123",
  "options": {
    "include_examples": true,
    "use_team_patterns": true,
    "verbosity": "concise",
    "target_llm": "gpt-4",
    "max_context_tokens": 50000,
    "prioritize": "recent|relevant|personal|team"
  }
}

Response:
{
  "success": true,
  "data": {
    "enhanced_prompt": "In Laravel 10.x, create a queued job for user data processing...",
    "injected_context": [
      "Team convention: Use app/Jobs directory",
      "Pattern: Implement ShouldQueue interface",
      "Recent example: ProcessUserDataJob.php"
    ],
    "context_stats": {
      "tokens_used": 45230,
      "tokens_available": 128000,
      "memories_included": 12,
      "memories_excluded": 5,
      "summarized": false
    },
    "confidence": 0.94
  }
}

Stream Enhancement

POST /api/enhance/stream

  • Server-Sent Events (SSE) endpoint for real-time streaming
  • Same request format as /api/enhance
  • Returns chunks as: data: {"content": "partial text", "finished": false}\n\n

Context Preview

POST /api/context/preview

Request:
{
  "query": "How to implement authentication",
  "profile_id": "prof_abc123",
  "target_llm": "gpt-4"
}

Response:
{
  "success": true,
  "data": {
    "estimated_tokens": 45230,
    "token_limit": 128000,
    "breakdown": {
      "system_prompt": 500,
      "user_query": 50,
      "memories": 25000,
      "team_context": 10000,
      "domain_knowledge": 9680
    },
    "will_fit": true,
    "optimization_suggestions": [
      "Consider summarizing memories older than 30 days",
      "Remove duplicate Laravel auth patterns"
    ]
  }
}

3.4 Knowledge Platform

Universal Ingestion

POST /api/knowledge/ingest

Request:
{
  "source_type": "video", // video|blog|repository|documentation|forum|slack
  "source_config": {
    "url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
    "platform": "youtube"
  },
  "processing_instructions": {
    "transcribe_audio": true,
    "extract_code_samples": true,
    "extract_timestamps": true,
    "identify_speakers": true
  },
  "metadata": {
    "author": "Laravel Daily",
    "topics": ["laravel", "testing"],
    "quality_rating": 0.9
  }
}

Response:
{
  "success": true,
  "data": {
    "ingestion_id": "ing_abc123",
    "status": "processing",
    "estimated_completion": "2024-01-01T10:05:00Z",
    "webhook_url": "https://api.ulpi.ai/webhooks/ingestion/ing_abc123"
  }
}

Knowledge Graph Query

POST /api/knowledge/graph/query

Request:
{
  "start_concept": "laravel_queues",
  "relationship_types": ["implements", "requires", "conflicts_with"],
  "max_depth": 3,
  "include_examples": true
}

Response:
{
  "success": true,
  "data": {
    "nodes": [
      {
        "id": "concept_123",
        "name": "laravel_queues",
        "type": "framework_feature"
      },
      {
        "id": "concept_456",
        "name": "redis",
        "type": "technology"
      }
    ],
    "edges": [
      {
        "from": "concept_123",
        "to": "concept_456",
        "relationship": "requires",
        "strength": 0.8
      }
    ]
  }
}

3.5 Advanced Features

Analytics Dashboard

GET /api/analytics/usage

Response:
{
  "success": true,
  "data": {
    "period": "last_30_days",
    "enhancements": 1523,
    "time_saved_hours": 127,
    "most_used_memories": [
      {
        "id": "mem_123",
        "content": "Laravel repository pattern",
        "usage_count": 87
      }
    ],
    "knowledge_growth": {
      "memories_created": 234,
      "sources_connected": 12,
      "team_contributions": 567
    }
  }
}

Predictive Intelligence

POST /api/intelligence/predict

Request:
{
  "user_context": {
    "current_file": "PaymentController.php",
    "recent_queries": ["stripe integration", "webhook handling"],
    "time_of_day": "09:30",
    "project_phase": "implementation"
  }
}

Response:
{
  "success": true,
  "data": {
    "predictions": [
      {
        "likely_need": "stripe_webhook_verification",
        "confidence": 0.89,
        "preloaded_knowledge": ["webhook security", "stripe signatures"]
      }
    ]
  }
}

3.6 Multi-Role Intelligence

Cross-Role Enhancement

POST /api/enhance/multi-role

Request:
{
  "input": "We need to improve API performance",
  "roles": ["backend_engineer", "devops", "product_manager"],
  "format": "synthesis" // comparison|synthesis|debate
}

Response:
{
  "success": true,
  "data": {
    "perspectives": {
      "backend_engineer": "Implement caching layers, optimize queries...",
      "devops": "Scale horizontally, add CDN, monitor bottlenecks...",
      "product_manager": "Consider feature flags for gradual rollout..."
    },
    "synthesis": "A comprehensive approach would involve..."
  }
}

4. API Standards

4.1 Authentication

  • JWT tokens with 7-day expiry
  • Refresh tokens with 30-day expiry
  • API keys for CLI/desktop apps
  • OAuth 2.0 for third-party integrations

4.2 Rate Limiting

  • Authenticated: 600 requests/minute
  • Unauthenticated: 60 requests/minute
  • Enhancement endpoint: 30 requests/minute
  • Knowledge ingestion: 10 requests/minute

4.3 Response Format

{
  "success": true,
  "data": {},
  "meta": {
    "timestamp": "2024-01-01T10:00:00Z",
    "version": "1.0"
  }
}

4.4 Error Format

{
  "success": false,
  "error": {
    "code": "VALIDATION_ERROR",
    "message": "Invalid input",
    "details": {}
  }
}

5. Database Schemas

5.1 MySQL Tables

-- users
id, email, name, password, provider, provider_id, active_profile_id, settings, created_at, updated_at

-- teams  
id, name, slug, owner_id, settings, created_at, updated_at

-- team_users
id, team_id, user_id, role, joined_at

-- api_keys
id, user_id, name, key_hash, last_used_at, expires_at, created_at

-- profiles
id, user_id, name, description, settings, is_active, created_at, updated_at

5.2 MongoDB Collections

memories

{
  _id: ObjectId,
  user_id: Number,
  team_id: Number,
  content: String,
  type: "personal|team|global",
  domain: String,
  tags: [String],
  qdrant_points: [
    {
      point_id: String,
      chunk_index: Number,
      chunk_text: String
    }
  ],
  context: {
    source: String,
    confidence: Float,
    extracted_from: String
  },
  usage_stats: {
    used_count: Number,
    last_used: Date,
    effectiveness_score: Float
  },
  created_at: Date,
  updated_at: Date,
  deleted_at: Date // Soft deletes
}

knowledge_sources

{
  _id: ObjectId,
  type: "video|blog|repository|forum|slack|documentation",
  name: String,
  source_url: String,
  config: Object,
  status: "active|processing|error",
  sync_schedule: String,
  last_sync: Date,
  next_sync: Date,
  statistics: {
    items_processed: Number,
    knowledge_extracted: Number,
    quality_score: Float
  },
  metadata: {
    branch: String,
    paths: [String],
    total_documents: Number,
    total_chunks: Number
  }
}

voice_profiles

{
  _id: ObjectId,
  name: String,
  role: String,
  experience_level: "senior|mid|junior",
  characteristics: {
    tone: String,
    vocabulary: [String],
    sentence_structure: String,
    examples: [String]
  },
  training_data: [String],
  usage_count: Number,
  satisfaction_score: Float,
  created_at: Date,
  updated_at: Date
}

context_patterns

{
  _id: ObjectId,
  pattern: String,
  triggers: [Object],
  applicable_contexts: [String],
  success_rate: Float,
  examples: [Object],
  created_at: Date
}

memory_extractions

{
  _id: ObjectId,
  job_id: String,
  trigger_type: String,
  user_id: Number,
  team_id: Number,
  source_data: Object,
  llm_request: {
    provider: String,
    model: String,
    prompt_tokens: Number,
    completion_tokens: Number,
    cost: Float
  },
  extracted_memories: [
    {
      memory_id: String,
      confidence: Float,
      reason: String
    }
  ],
  status: String,
  error: String,
  processing_time_ms: Number,
  created_at: Date,
  completed_at: Date
}

context_optimization_logs

{
  _id: ObjectId,
  user_id: Number,
  profile_id: String,
  query: String,
  llm_model: String,
  optimization_strategy: String,
  token_budget: Number,
  token_usage: {
    total: Number,
    system: Number,
    memories: Number,
    team: Number,
    domain: Number
  },
  excluded_content: [
    {
      type: String,
      reason: String,
      tokens_saved: Number
    }
  ],
  performance_ms: Number,
  created_at: Date
}

6. Queue Jobs

6.1 Knowledge Processing Jobs

  • IngestContentJob: Process videos, blogs, documentation
  • ExtractMemoriesJob: Extract actionable knowledge from content
  • GenerateEmbeddingsJob: Create vector embeddings for search
  • SyncCommunityJob: Pull latest from Stack Overflow, forums
  • UpdateKnowledgeGraphJob: Maintain relationship connections
  • RefreshDocumentationJob: Weekly updates for all documentation sources
  • PackageDiscoveryJob: Daily scan for new packages/versions

6.2 Intelligence Jobs

  • AnalyzeContextJob: Deep context analysis for complex scenarios
  • PredictUserNeedsJob: Pre-calculate likely next actions
  • OptimizeKnowledgeJob: Prune outdated, merge similar knowledge
  • TrainVoiceProfileJob: Learn from new content sources
  • ProcessMemoryJob: Extract memories from conversations/events

6.3 System Jobs

  • CleanupExpiredTokensJob: Remove expired JWT tokens
  • CalculateAnalyticsJob: Generate usage statistics
  • BackupVectorStoreJob: Backup Qdrant collections
  • SyncTeamSettingsJob: Propagate team changes to members

7. Client Integration Patterns

7.1 VS Code Extension

// Hotkey triggered
const context = vscode.getContext();
const response = await ulpi.enhance({
  input: selectedText,
  context: {
    app: 'vscode',
    file: activeFile,
    language: detectLanguage()
  },
  profile_id: activeProfile
});
vscode.insert(response.enhanced_output);

7.2 Browser Extension

// Right-click menu or hotkey
const response = await ulpi.enhance({
  input: getSelectedText(),
  context: {
    app: 'chrome',
    url: window.location.href,
    field_type: detectFieldType()
  }
});
replaceText(response.enhanced_output);

7.3 CLI Tool

# Terminal command
$ ulpi enhance "create user migration" --profile backend --app terminal
# Output: Laravel migration boilerplate

7.4 SDK Examples

// JavaScript SDK
import { ULPI } from '@ulpi/sdk';

const ulpi = new ULPI({ apiKey: 'your-api-key' });
const enhanced = await ulpi.enhance({
  input: 'Create a REST API',
  profile: 'backend-engineer'
});

8. Performance Requirements

8.1 Response Times

  • Auth endpoints: < 100ms (p95)
  • Memory search: < 200ms (p95)
  • Context analysis: < 300ms (p95)
  • Enhancement: < 500ms (p95)
  • Streaming: First token < 200ms
  • Knowledge ingestion: Async with webhooks
  • Context optimization: < 150ms (p95)
  • Token counting: < 50ms (p95)

8.2 Scale Requirements

  • Concurrent users: 10,000
  • API requests: 1M/day
  • Vector searches: 10M/day
  • Knowledge storage: 100GB per organization
  • Uptime: 99.9% availability

8.3 Performance Optimizations

  • Redis caching for frequently accessed memories
  • CDN for static knowledge content
  • Database read replicas for scale
  • Queue workers auto-scaling
  • Vector index optimization

8.4 Resource Planning

Per User Resource Consumption (Monthly):

User Type Storage Vectors API Calls Bandwidth Queue Jobs
Free 10MB 100 50 (BYOK) 50MB 20
Starter 50MB 500 500 (BYOK) 200MB 100
Pro 200MB 1000 Unlimited 500MB Unlimited
Team 100MB/seat 2000/seat Unlimited 1GB/seat Unlimited

Infrastructure Scaling Triggers:

  • When capacity > 80%: Scale up
  • When capacity < 40%: Scale down
  • When free user CAC > $1: Restrict signups
  • When paid user latency > SLA: Prioritize resources

9. Security Requirements

9.1 Authentication & Authorization

  • OAuth 2.0 for third-party apps
  • JWT with refresh token rotation
  • API key management with scopes
  • Multi-factor authentication support
  • Role-based access control (RBAC)

9.2 Data Protection

  • End-to-end encryption for sensitive memories
  • Encryption at rest for all databases
  • TLS 1.3 for all API communication
  • Team-level data isolation
  • PII anonymization options

9.3 Compliance

  • GDPR compliance with right to deletion
  • SOC 2 Type II certification path
  • HIPAA compliance ready
  • Data residency options
  • Audit logs for all data access

9.4 Security Monitoring

  • Rate limiting and DDoS protection
  • Anomaly detection for usage patterns
  • Security event logging
  • Vulnerability scanning
  • Incident response procedures

10. Success Metrics

10.1 User Metrics

  • Daily Active Users (DAU)
  • Memories created per user
  • Enhancement requests per day
  • Profile switches per week
  • Knowledge sources connected

10.2 Performance Metrics

  • Time saved per user (target: 10-20 hrs/month)
  • Memory injection accuracy (> 85%)
  • Context detection accuracy (> 90%)
  • User satisfaction score (NPS > 50)
  • API response times (< 500ms p95)

10.3 Business Metrics

  • Customer retention rate (> 90%)
  • Team adoption rate (> 80%)
  • Revenue per user
  • Support ticket volume (< 5% of MAU)
  • Expansion revenue from teams
  • Free to paid conversion (> 3%)
  • Cost per free user (< $0.50/month)
  • Infrastructure efficiency (< 30% of revenue)

10.4 Intelligence Metrics

  • Knowledge relevance score (> 85%)
  • Prediction accuracy (> 75%)
  • Voice matching quality (> 90%)
  • Knowledge graph connections
  • Memory reuse rate
  • Context fit success rate (> 95%)
  • Average token utilization (70-85% of limit)
  • Context overflow incidents (< 1% of requests)

11. MVP Definition (Phase 1-3)

11.1 MVP Scope (3 Months)

Month 1: Foundation

  • ✅ Authentication & team management
  • ✅ Basic profile system
  • ✅ Memory CRUD operations
  • ✅ Simple vector search

Month 2: Intelligence

  • ✅ Context analysis engine
  • ✅ Prompt enhancement
  • ✅ Basic knowledge ingestion
  • ✅ Team knowledge sharing

Month 3: Platform

  • ✅ Multi-source ingestion (repositories, docs)
  • ✅ Knowledge graph basics
  • ✅ Voice profiles (2-3 variations)
  • ✅ Analytics dashboard
  • ✅ VS Code extension
  • ✅ Web dashboard

11.2 Post-MVP Roadmap

Quarter 2

  • Advanced predictive intelligence
  • Real-time collaboration features
  • Enterprise integrations (Confluence, Jira)
  • Mobile SDKs

Quarter 3

  • Multi-role perspectives
  • Industry-specific packages
  • Autonomous agents
  • Knowledge marketplace

Quarter 4

  • AI model fine-tuning
  • Advanced analytics
  • White-label options
  • Global knowledge network

Future Expansion (Year 2)

  • Multi-language support: Start with Spanish, French, German
  • Localization: Cultural context handling, regional preferences
  • Global knowledge bases: Country-specific regulations, practices
  • Translation layer: Cross-language knowledge sharing

12. Technical Decisions

  • Framework: Laravel 10.x
  • Queue: Redis + Horizon
  • Vector DB: Qdrant (self-hosted initially)
  • LLM: OpenAI GPT-4 (primary), Anthropic Claude (fallback)
  • Monitoring: Laravel Telescope + Sentry
  • Deployment: Docker + Kubernetes
  • Language Strategy: English-first for MVP, i18n-ready architecture
  • Token Management: tiktoken for accurate token counting

12.1 Cost Optimization Strategy

Free Tier Management:

  • Aggressive caching (24hr for common queries)
  • Memory deduplication across users
  • Auto-expire unused memories after 30 days
  • Require BYOK for all free users

Infrastructure Efficiency:

  • Start with free tiers (MongoDB Atlas, Qdrant Cloud)
  • Use spot instances for non-critical workers
  • Implement request coalescing for similar queries
  • Progressive feature unlocking based on usage

Scaling Strategy:

  • Stage 1: Monolith on single server
  • Stage 2: Separate API and workers
  • Stage 3: Microservices for heavy features
  • Stage 4: Multi-region deployment

13. Knowledge Management System

13.1 Scheduled Jobs

  • RefreshDocumentationJob: Weekly updates for all documentation sources
  • PackageDiscoveryJob: Daily scan for new packages/versions
  • KnowledgeIndexingJob: Process and chunk new content into Qdrant
  • VoiceTrainingJob: Update voice profiles based on usage patterns

13.2 MongoDB Collections

knowledge_sources

{
  "_id": "...",
  "type": "repository|book|framework|package",
  "name": "Laravel Documentation",
  "source_url": "https://github.com/laravel/docs",
  "framework": "laravel",
  "version": "10.x",
  "refresh_schedule": "weekly",
  "last_refresh": "2024-01-01T00:00:00Z",
  "next_refresh": "2024-01-08T00:00:00Z",
  "status": "active|refreshing|error",
  "metadata": {
    "branch": "10.x",
    "paths": ["*.md"],
    "total_documents": 156,
    "total_chunks": 3420
  }
}

voice_profiles

{
  "_id": "...",
  "name": "Big Tech PM",
  "role": "product_manager",
  "experience_level": "senior|mid|junior",
  "characteristics": {
    "tone": "data-driven, strategic",
    "vocabulary": ["OKRs", "north star metric", "flywheel"],
    "sentence_structure": "complex, nuanced",
    "examples": ["Based on our Q3 data..."]
  },
  "training_data": ["sample_outputs"],
  "usage_count": 1523,
  "satisfaction_score": 0.94
}

role_definitions

{
  "_id": "...",
  "name": "VP_Engineering",
  "department": "engineering",
  "responsibilities": ["technical strategy", "team scaling"],
  "knowledge_domains": ["system_design", "leadership", "agile"],
  "default_voices": ["startup_vp_eng", "enterprise_vp_eng"],
  "common_contexts": ["architecture_review", "team_1on1", "board_presentation"]
}

13.3 Universal Knowledge Ingestion Examples

YouTube Video Processing

# 1. Ingest conference talk
POST /api/knowledge/ingest
{
  "source_type": "video",
  "source_config": {
    "url": "https://youtube.com/watch?v=laravel-beyond-crud"
  },
  "processing_instructions": {
    "transcribe_audio": true,
    "extract_code_samples": true,
    "extract_diagrams": true,
    "identify_timestamps": true
  }
}

# 2. System processes
- Downloads video
- Transcribes with timestamps
- OCRs code shown on screen
- Extracts architecture diagrams
- Identifies key concepts by section
- Creates embeddings for each concept
- Links to speaker's other content

# 3. Usage
User: "How should I structure a large Laravel app?"
Result: Pulls exact timestamp + code examples from conference talk

Stack Overflow Integration

# 1. Connect to Laravel community
POST /api/knowledge/communities/connect
{
  "platform": "stackoverflow",
  "filters": {
    "tags": ["laravel", "php"],
    "min_score": 50,
    "accepted_answers": true
  },
  "capture": ["questions", "solutions", "comments"]
}

# 2. Real-time monitoring
- Monitors new questions/answers
- Tracks solution patterns
- Identifies expert contributors
- Updates knowledge graph
- Deprecates outdated solutions

# 3. Usage
User: "Laravel API rate limiting error"
Result: Latest community solutions + official docs + team's past fixes

Enterprise Confluence + Jira Integration

# 1. Connect internal systems
POST /api/knowledge/enterprise/connect
{
  "systems": [
    {
      "type": "confluence",
      "spaces": ["Engineering Wiki", "Architecture Decisions"],
      "sync_private": true
    },
    {
      "type": "jira",
      "extract": ["post_mortems", "architecture_decisions", "bug_resolutions"]
    }
  ]
}

# 2. Continuous sync
- Syncs private team knowledge
- Extracts patterns from incidents
- Learns from architecture decisions
- Maintains access control

# 3. Usage
User: "How do we handle payment failures?"
Result: Company's specific handling + past incidents + industry best practices

Voice Learning from Multiple Sources

# 1. Learn Marc Andreessen's communication style
POST /api/voices/learn
{
  "sources": [
    {"type": "tweets", "handle": "@pmarca", "count": 5000},
    {"type": "blog", "url": "a16z.com/author/marc-andreessen"},
    {"type": "podcast", "show": "The a16z Podcast", "episodes": "all"}
  ],
  "analyze": {
    "writing_style": true,
    "thought_patterns": true,
    "argument_structure": true
  }
}

# 2. Creates nuanced voice profile
- Sentence structure patterns
- Vocabulary preferences
- Reasoning approaches
- Cultural references
- Industry perspectives

# 3. Usage
Input: "We need to pivot our product"
Output: "Software is eating the world, and your current approach... [Marc's style analysis + actual business logic]"

Knowledge Graph Conflict Resolution

# 1. Conflicting information detected
System detects: "Redux vs Context API for state management"

# 2. Intelligent resolution
POST /api/knowledge/graph/validate
{
  "concept": "react_state_management",
  "sources": ["redux_docs", "react_docs", "kent_c_dodds_blog"],
  "resolution_strategy": "synthesize"
}

# 3. Creates nuanced understanding
- "Use Context for small apps (< 50 components)"
- "Redux for complex state with time-travel needs"
- "Consider Zustand as modern alternative"
- Links to real-world examples from each approach

13.4 Knowledge Ingestion Architecture

Processing Pipeline

Source → Extractor → Processor → Chunker → Embedder → Qdrant
   ↓         ↓           ↓          ↓         ↓          ↓
Monitor   Validate   Transform   Index    Vector    Search

Extractor Types

  • Video: Whisper API → Transcript + Timestamps
  • Code: AST Parser → Patterns + Architecture
  • Forums: API/Scraper → Q&A Pairs
  • Diagrams: OCR + Vision AI → Concepts
  • Slack/Discord: Webhooks → Real-time Knowledge

Quality Scoring

Each piece of knowledge gets scored on:

  • Authority: Who created it (expert vs novice)
  • Recency: How current is it
  • Validation: Community votes/acceptance
  • Usage: How often it's been helpful
  • Accuracy: Verified against other sources

14. Supported Knowledge Types

14.1 Technical Documentation

  • Frameworks: Laravel, React, Vue, Django, Rails, Spring Boot
  • Languages: PHP, JavaScript, Python, Ruby, Java, Go
  • Packages: Auto-discovered from Packagist, NPM, PyPI, RubyGems
  • Update Frequency: Weekly for docs, daily for packages

14.2 Professional Knowledge

  • Product Management: Lean Product, RICE, Jobs-to-be-Done, OKRs
  • Engineering Leadership: System Design, Team Scaling, Technical Strategy
  • Marketing: StoryBrand, AIDA, Growth Hacking, Content Strategy
  • Finance: Financial Modeling, Investor Relations, Compliance
  • Sales: SPIN Selling, Challenger Sale, Territory Management

14.3 Voice Variations

Each role supports multiple experience levels and contexts:

  • Startup: Fast-paced, MVP-focused, resource-conscious
  • Enterprise: Process-driven, compliance-aware, stakeholder-focused
  • Agency: Client-focused, deadline-driven, creative

14.4 Knowledge Quality Framework

  • Authority Score: Based on source credibility
  • Recency Weight: Newer knowledge ranked higher
  • Usage Analytics: Popular knowledge surfaces more
  • Community Validation: Upvotes and verifications
  • Conflict Resolution: Smart merging of contradictions

15. Release Timeline

  • Alpha: Weeks 1-8 (Foundation + Core Memory)
  • Beta: Weeks 9-12 (Context Intelligence)
  • Beta 2: Weeks 13-20 (Universal Knowledge Platform)
  • GA: Week 24 (Advanced Features)
  • V2: Week 28 (Multi-Role Expansion)

Document Version: 2.0
Status: In Development
Last Updated: January 2024
Product Owner: {{ product_owner }}
Engineering Lead: {{ tech_lead }}

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment