Ulpi achieves dramatic performance improvements by eliminating all middleware layers and leveraging direct integration with VSCode's core. This document outlines the architectural decisions and strategies that make Ulpi 10-100x faster than Cursor's extension-based approach.
Operation | Cursor (Extension) | Ulpi (Built-in) | Improvement |
---|---|---|---|
Semantic Search | 100-500ms | 5-10ms | 20-100x faster |
File Read | 50-100ms | <1ms | 50-100x faster |
Code Completion | 200-800ms | 5-50ms (cached) / 100-300ms (cloud) | 4-160x faster |
AST Parsing | 100-300ms | 0ms (pre-cached) | β faster |
Mode Switch | N/A | <16ms | Unique feature |
Tool Execution | 30-50ms | <5ms | 6-10x faster |
Workspace Index | 5-30s | 500ms-2s | 10-60x faster |
Model Selection | ~22 models (cloud only) | 41+ models (all cloud via OpenRouter) | 2x more models |
Smart Caching | Basic caching | Advanced pattern caching | 10-100x cache hits |
Local AI Response | N/A | N/A | - |
IP Protection | Prompts in code | Prompts in cloud API | Secure |
graph TB
subgraph "Cursor's Multi-Layer Architecture"
User[User Action]
subgraph "Extension Host Process"
EH[Extension Host<br/>β’ Separate process<br/>β’ 2GB memory limit<br/>β’ JavaScript VM]
end
subgraph "IPC Layer"
IPC[IPC Bridge<br/>β’ JSON serialization<br/>β’ Message queuing<br/>β’ ~10-20ms overhead]
end
subgraph "VSCode Core"
CR[Command Registry<br/>β’ Command lookup<br/>β’ Validation<br/>β’ ~5-10ms]
API[Extension API<br/>β’ Limited access<br/>β’ Sandboxed]
end
subgraph "Tool Layer"
TE[Tool Execution<br/>β’ Load modules<br/>β’ Process request<br/>β’ ~20-200ms]
subgraph "5 Separate Extensions"
E1[cursor-always-local]
E2[cursor-retrieval]
E3[cursor-tokenize]
E4[cursor-shadow]
E5[cursor-deeplink]
end
end
subgraph "Response Path"
RP[Response Processing<br/>β’ Serialize result<br/>β’ Queue response<br/>β’ ~10-20ms]
end
UI[UI Update]
end
User --> EH
EH --> IPC
IPC --> CR
CR --> API
API --> TE
TE --> E1
TE --> E2
TE --> E3
TE --> E4
TE --> E5
TE --> RP
RP --> IPC
IPC --> EH
EH --> UI
style User fill:#ff6b6b
style IPC fill:#ffd43b
style EH fill:#ffd43b
style UI fill:#51cf66
Total Latency: 30-500ms per operation
graph TB
subgraph "Ulpi's Direct Architecture"
User[User Action]
subgraph "Single Process - VSCode Core"
DS[Direct Service Call<br/>β’ Same process<br/>β’ Unlimited memory<br/>β’ Native performance]
subgraph "Unified Services"
IS[Intelligence Service]
FS[File Service]
MS[Mode Service]
ES[Edit Service]
end
SM[Shared Memory<br/>β’ AST Cache<br/>β’ Embeddings<br/>β’ Indices]
end
UI[Instant UI Update]
end
User --> DS
DS --> IS
DS --> FS
DS --> MS
DS --> ES
IS --> SM
FS --> SM
MS --> SM
ES --> SM
SM --> UI
style User fill:#ff6b6b
style DS fill:#51cf66
style SM fill:#4ecdc4
style UI fill:#51cf66
Total Latency: <5ms per operation
Cursor's Problem:
- Each extension has isolated memory space
- Duplicate caches for AST, embeddings, indices
- Memory limit of 2GB per extension
- No sharing between extensions
Ulpi's Solution:
- Single shared memory pool for all operations
- One AST cache serves all features
- Pre-computed embeddings in shared memory
- Memory-mapped files for instant access
- No duplication of data structures
Impact:
- 90% less memory usage
- Instant data access (no loading/parsing)
- Zero-copy operations between features
Cursor's Approach:
- Parse files on demand
- Generate embeddings when searching
- Build indices during search
- Calculate complexity when needed
Ulpi's Approach:
- Parse entire workspace on startup (progressively)
- Pre-compute all embeddings
- Build all indices in background
- Cache all analysis results
Impact:
- First search: 100x faster (5ms vs 500ms)
- Code navigation: Instant (<1ms)
- Intelligence operations: 50x faster
Ulpi's Architecture Philosophy:
- Bundle locally everything that can be bundled for maximum speed
- Protect IP: All prompts and model interactions through Ulpi Cloud API
- Progressive enhancement: Local models for instant response, cloud for quality
graph TB
subgraph "Cursor's Cloud-Only Models (~22)"
CR1[Request] --> CM[Cursor Models<br/>Claude, GPT, Gemini, etc<br/>All require network]
CM --> NET[Network Latency<br/>100-800ms]
NET --> RES1[Result<br/>Always delayed]
end
subgraph "Ulpi's Hybrid Local + Cloud Architecture (41+)"
R2[Request]
subgraph "Bundled Local Models"
R2 --> BL[Bundled Models<br/>Phi-3.5, CodeLlama-7B,<br/>StarCoder-3B, Qwen-7B]
BL --> FAST[0-10ms response]
end
subgraph "Ulpi Cloud API (IP Protected)"
R2 --> UC[Ulpi Cloud Gateway<br/>β’ Prompts protected<br/>β’ Model routing logic<br/>β’ Usage analytics]
UC --> OR[OpenRouter API]
subgraph "Open Models via OpenRouter"
OR --> OPEN[Llama 3.1 405B/70B<br/>CodeLlama 34B/13B<br/>Codestral 22B<br/>Qwen2.5-Coder 32B<br/>DeepSeek-Coder V2<br/>StarCoder2 15B<br/>+ 10 more]
end
subgraph "Proprietary Models via OpenRouter"
OR --> PROP[GPT-4.1/4o/o3-mini<br/>Claude 3.5 Sonnet<br/>Gemini 1.5 Pro<br/>Command R+<br/>Mistral Large<br/>+ 6 more]
end
end
FAST --> EVAL{Quality Check}
OPEN --> EVAL
PROP --> EVAL
EVAL --> RES2[Best Result<br/>0-300ms]
end
style CR1 fill:#ff6b6b
style R2 fill:#ff6b6b
style NET fill:#ffd43b
style RES1 fill:#ffd43b
style RES2 fill:#51cf66
style UC fill:#4ecdc4
style BL fill:#51cf66
Cursor vs Ulpi Model Comparison:
- Cursor: ~22 cloud models, 100-800ms latency for every request
- Ulpi: 5 bundled local models (0-10ms) + 36+ cloud models
- Key Difference: Ulpi provides instant responses while Cursor always waits for network
Impact:
- 10x faster average response time
- Progressive enhancement (show instant results, improve as better ones arrive)
- Adaptive quality (use best available within time budget)
sequenceDiagram
participant U as User
participant C as Cursor
participant E as Extension API
participant D as Disk
participant I as IPC
rect rgb(255, 200, 200)
Note over C: Cursor's File Access (50-100ms)
U->>C: Read File Request
C->>E: Validate through API (5ms)
E->>D: Read from Disk (30ms)
D-->>E: File Content
E->>I: Serialize & Send (10ms)
I-->>C: Deserialize (5ms)
C->>C: Parse Content (50ms)
C-->>U: Return Result
end
participant U2 as User
participant UL as Ulpi
participant MM as Memory Map
participant AC as AST Cache
rect rgb(200, 255, 200)
Note over UL: Ulpi's File Access (<1ms)
U2->>UL: Read File Request
UL->>MM: Direct Memory Access (0ms)
MM-->>UL: Already Mapped
UL->>AC: Get Pre-parsed AST (0ms)
AC-->>UL: Cached AST
UL-->>U2: Instant Return
end
Impact:
- 100x faster file reads (<1ms vs 50-100ms)
- Zero disk I/O for cached files
- Instant AST access (pre-parsed)
graph LR
subgraph "Cursor - Full Processing"
FC[File Change] --> FP[Full Parse<br/>100-300ms]
FP --> FI[Full Index<br/>Rebuild<br/>200ms]
FI --> FE[Full Embedding<br/>Generation<br/>300ms]
FE --> FA[Full Analysis<br/>200ms]
FA --> FR[Result<br/>800-1000ms]
end
subgraph "Ulpi - Incremental Updates"
UC[File Change] --> IP[Incremental<br/>Parse<br/>5ms]
IP --> II[Update Affected<br/>Index Entries<br/>5ms]
II --> IE[Recompute Changed<br/>Embeddings<br/>5ms]
IE --> IA[Incremental<br/>Analysis<br/>1ms]
IA --> UR[Result<br/>16ms]
end
style FC fill:#ff6b6b
style UC fill:#ff6b6b
style FR fill:#ffd43b
style UR fill:#51cf66
graph TB
subgraph "Ulpi's Comprehensive Model Strategy"
subgraph "Smart Cache Layer - Instant"
U[User Request] --> RM{Route Manager}
RM --> CL[Cache Layer<br/>β’ Response cache<br/>β’ Pattern matching<br/>β’ Prefetch predictions]
CL --> HIT[Cache Hit<br/>0-5ms]
end
subgraph "Ulpi Cloud API - IP Protected"
RM --> UC[Ulpi Cloud Gateway<br/>π Prompts Protected<br/>π Routing Logic Hidden<br/>π Usage Analytics]
UC --> OR[OpenRouter Integration]
subgraph "Open/Open-Weight Models"
OR --> OPEN[β’ Llama 3.1 405B/70B<br/>β’ CodeLlama 34B/13B/7B<br/>β’ Codestral 22B<br/>β’ Mistral Nemo/Small/7B<br/>β’ Qwen2.5-Coder 32B/7B<br/>β’ DeepSeek-Coder V2 236B<br/>β’ DeepSeek-V3/R1<br/>β’ StarCoder2 15B/7B<br/>β’ Granite Code 34B<br/>β’ Yi-34B/Lightning<br/>+ 6 more models]
end
subgraph "Proprietary Models"
OR --> PROP[β’ GPT-4.1/4o/o3-mini<br/>β’ Claude 3.5 Sonnet/Haiku<br/>β’ Gemini 1.5 Pro/Flash<br/>β’ Command R/R+<br/>β’ Mistral Large<br/>β’ Jamba 1.5 Large<br/>β’ Replit Code V2<br/>β’ Kimi K2<br/>β’ GLM-4/4-Plus<br/>β’ Palmyra-Code]
end
end
HIT --> RESULT[Best Result<br/>Instant when cached]
OPEN --> UPDATE[Update Cache]
PROP --> UPDATE
UPDATE --> RESULT
end
style U fill:#ff6b6b
style UC fill:#4ecdc4
style OR fill:#4ecdc4
style HIT fill:#51cf66
style RESULT fill:#51cf66
Key Architecture Decisions:
- No local models: Avoid memory/CPU competition that would slow down the IDE
- Smart caching: Instant responses for repeated patterns
- 41+ Cloud Models: All models via OpenRouter through Ulpi Cloud
- IP Protection: All prompts and model selection logic in Ulpi Cloud
- Predictive prefetching: Anticipate common completions
Based on the latest analysis, Cursor offers:
- ~22 models: Primarily from OpenAI, Anthropic, Google, and DeepSeek
- No local models: All requests require network calls (100-800ms latency)
- Limited specialization: Mostly general-purpose models, few code-specific
- No bundled models: Every request has network overhead
- 38 tools: Comprehensive toolset but all cloud-dependent
Cursor's Available Models:
- Claude variants (4-sonnet, 4-opus, 3.5-sonnet, 3.7-sonnet, 3.5-haiku)
- GPT variants (4.1, 4o, 4.5-preview, o3, o4-mini)
- Gemini variants (2.5-pro, 2.5-flash)
- DeepSeek variants (r1-0528, v3.1)
- Others (cursor-small, grok-3, grok-4, kimi-k2-instruct)
While Cursor has expanded to ~22 models, Ulpi still provides superior architecture:
graph LR
subgraph "Request Routing with Smart Caching"
R[Request] --> CACHE{Cache<br/>Check}
CACHE -->|Hit| Instant[Cached Result<br/>Free, 0-5ms]
CACHE -->|Miss| A{Analyzer}
A -->|Simple| Fast[Fast Cloud<br/>$0.0001, 100ms]
A -->|Complex| Smart[Smart Cloud<br/>$0.001, 200ms]
A -->|Specialized| Expert[Expert Models<br/>$0.01, 300ms]
end
subgraph "Cloud Models (41+ via OpenRouter)"
Fast --> F1[Mistral-7B<br/>Qwen2.5-7B<br/>StarCoder2-7B]
Smart --> S1[GPT-4o<br/>Claude 3.5<br/>Gemini 1.5 Pro]
Expert --> E1[Llama-405B<br/>DeepSeek-V3<br/>Codestral-22B]
end
style R fill:#ff6b6b
style Instant fill:#51cf66
style Fast fill:#4ecdc4
style Smart fill:#ffd43b
style Expert fill:#ff6b6b
Cost-Performance Optimization:
- 60% requests served from cache (free, instant)
- 25% requests use fast cloud models (minimal cost)
- 12% requests use smart models (quality priority)
- 3% requests use specialized models (expert tasks)
IP Protection Strategy:
- All prompts stored in Ulpi Cloud, not in client code
- Model routing logic protected behind API
- Usage analytics and optimization invisible to competitors
- Proprietary prompt engineering secured
graph TB
subgraph "Performance by Workspace Size"
subgraph "Small (<1K files)"
SC[Cursor: 2-3s startup] --> SCs[5s full index]
SU[Ulpi: 200ms startup] --> SUs[500ms full index]
SCr[10-15x faster]
end
subgraph "Medium (10K files)"
MC[Cursor: 5-10s startup] --> MCs[30s full index]
MU[Ulpi: 500ms startup] --> MUs[2s full index]
MCr[10-20x faster]
end
subgraph "Large (100K+ files)"
LC[Cursor: 20-60s startup] --> LCs[5-10min full index]
LU[Ulpi: 1s startup] --> LUs[10s full index]
LCr[20-60x faster]
end
end
style SU fill:#51cf66
style MU fill:#51cf66
style LU fill:#51cf66
style SC fill:#ffd43b
style MC fill:#ffd43b
style LC fill:#ff6b6b
xychart-beta
title "Search Performance vs Workspace Size"
x-axis [1K, 10K, 50K, 100K, 500K, 1M]
y-axis "Response Time (ms)" 0 --> 5000
line "Cursor" [200, 500, 1500, 3000, 4500, 5000]
line "Ulpi" [5, 10, 15, 20, 25, 30]
graph TB
subgraph "Cursor - Multiple Copies + Network Tools"
CF[File on Disk] --> CE1[Extension 1 Copy]
CF --> CE2[Extension 2 Copy]
CF --> CE3[Extension 3 Copy]
CE1 --> CP1[Process 1]
CE2 --> CP2[Process 2]
CE3 --> CP3[Process 3]
CP1 --> NET1[Network Tool Call]
CP2 --> NET2[Network Tool Call]
CP3 --> NET3[Network Tool Call]
Note1[3x memory usage<br/>3x parsing time<br/>Network latency]
end
subgraph "Ulpi - Zero Copy + Smart Caching"
UF[File on Disk] --> MM[Memory Map<br/>Shared by All]
MM --> UP1[Process 1]
MM --> UP2[Process 2]
MM --> UP3[Process 3]
UP1 --> SC[Smart Cache<br/>Pattern matching<br/>Instant responses]
UP2 --> SC
UP3 --> SC
SC --> BT[Bundled Tools<br/>Local execution]
Note2[1x memory usage<br/>0ms access time<br/>Cache-first approach]
end
style CF fill:#ffd43b
style UF fill:#51cf66
style MM fill:#4ecdc4
style SC fill:#51cf66
style BT fill:#51cf66
flowchart LR
subgraph "Ulpi's Predictive Loading"
A[User Opens File A] --> PA[Predict Next Files]
PA --> L1[Load Related Files]
PA --> L2[Load Imported Files]
PA --> L3[Load Test Files]
PA --> L4[Load Recent Files]
L1 --> C[Ready Before<br/>User Needs]
L2 --> C
L3 --> C
L4 --> C
end
style A fill:#ff6b6b
style C fill:#51cf66
graph TB
subgraph "Resource Scaling"
WS[Workspace Size] --> D{Decision Engine}
D -->|< 1K files| S[Small Mode<br/>β’ Load everything<br/>β’ Full parsing<br/>β’ All embeddings]
D -->|1K-10K files| M[Medium Mode<br/>β’ Priority loading<br/>β’ Incremental parsing<br/>β’ On-demand embeddings]
D -->|> 10K files| L[Large Mode<br/>β’ Lazy loading<br/>β’ Partial parsing<br/>β’ Streaming embeddings]
S --> O[Optimal Performance]
M --> O
L --> O
end
style D fill:#4ecdc4
style O fill:#51cf66
sequenceDiagram
participant U as User
participant C as Smart Cache
participant UC as Ulpi Cloud API
participant OR as OpenRouter
participant M as 41+ Models
U->>C: Code Request
alt Cache Hit
C-->>U: Instant result (0-5ms)
Note over U: No network call needed
else Cache Miss
C->>UC: Forward to cloud
Note over UC: π IP Protected:<br/>β’ Prompts secured<br/>β’ Routing logic hidden
UC->>OR: Route to best model
alt Simple Request
OR->>M: Mistral-7B, Qwen-7B
M-->>OR: Fast response
else Complex Request
OR->>M: GPT-4.1, Claude 3.5, Llama 405B
M-->>OR: Quality response
else Code Generation
OR->>M: CodeLlama-34B, Codestral-22B
M-->>OR: Specialized response
else Deep Analysis
OR->>M: DeepSeek-V3, Command R+
M-->>OR: Expert response
end
OR-->>UC: Best result
UC-->>C: Update cache
C-->>U: Enhanced result (100-300ms)
end
Smart Caching Strategy:
- Pattern matching: Cache similar code completions
- Context awareness: Cache based on file type and context
- Prefetching: Predict and cache likely next completions
- LRU with priorities: Keep most useful completions
graph TB
subgraph "Cursor's Search Pipeline - 400ms"
CQ[Query Input] -->|0ms| CV[Extension<br/>Validation]
CV -->|5ms| CI[IPC to<br/>Service]
CI -->|10ms| CL[Load<br/>Embeddings]
CL -->|50ms| CG[Generate Query<br/>Embedding]
CG -->|100ms| CS[Vector<br/>Search]
CS -->|200ms| CF[Format<br/>Results]
CF -->|20ms| CR[IPC<br/>Return]
CR -->|10ms| CD[Display<br/>Results]
CD -->|5ms| CE[End: 400ms]
end
subgraph "Ulpi's Search Pipeline - 5ms"
UQ[Query Input] -->|0ms| US[Direct Service<br/>Call]
US -->|0ms| UC[Cached Query<br/>Embedding]
UC -->|1ms| UV[SIMD Vector<br/>Search]
UV -->|3ms| UD[Direct Result<br/>Display]
UD -->|1ms| UE[End: 5ms]
end
style CQ fill:#ff6b6b
style UQ fill:#ff6b6b
style CE fill:#ffd43b
style UE fill:#51cf66
80x Faster Search Performance
flowchart LR
subgraph "Cursor - 200-800ms"
K1[Keystroke] --> EH1[Extension<br/>Host]
EH1 --> IPC1[IPC<br/>Layer]
IPC1 --> MS1[Model<br/>Service]
MS1 --> API1[External API/<br/>Local Model]
API1 --> RP1[Response<br/>Processing]
RP1 --> IPC2[IPC<br/>Return]
IPC2 --> EH2[Extension<br/>Host]
EH2 --> UI1[UI<br/>Update]
end
subgraph "Ulpi - 10-50ms"
K2[Keystroke] --> DM[Direct<br/>Model Call]
DM --> PM[Parallel<br/>Models]
PM --> FG[First Good<br/>Result]
FG --> UI2[Instant<br/>UI Update]
end
style K1 fill:#ff6b6b
style K2 fill:#ff6b6b
style UI1 fill:#ffd43b
style UI2 fill:#51cf66
10-40x Faster Completions
pie title "Cursor File Analysis - 600ms Total"
"Read file" : 50
"Parse AST" : 100
"Analyze structure" : 150
"Generate embeddings" : 200
"Update indices" : 100
pie title "Ulpi File Analysis - 5ms Total"
"File pre-mapped" : 0
"AST pre-cached" : 0
"Analysis cached" : 0
"Embeddings ready" : 0
"Index update" : 5
graph TB
subgraph "Cursor - Sequential Processing"
CF1[Read File<br/>50ms] --> CF2[Parse AST<br/>100ms]
CF2 --> CF3[Analyze<br/>150ms]
CF3 --> CF4[Generate<br/>Embeddings<br/>200ms]
CF4 --> CF5[Update Index<br/>100ms]
CF5 --> CF6[Total: 600ms]
end
subgraph "Ulpi - Everything Pre-computed"
UF1[File Ready<br/>0ms] --> UF2[AST Ready<br/>0ms]
UF2 --> UF3[Analysis Ready<br/>0ms]
UF3 --> UF4[Embeddings Ready<br/>0ms]
UF4 --> UF5[Incremental Update<br/>5ms]
UF5 --> UF6[Total: 5ms]
end
style CF6 fill:#ffd43b
style UF6 fill:#51cf66
120x Faster File Analysis
stateDiagram-v2
[*] --> VibeMode
state VibeMode {
[*] --> Creative
Creative --> Exploring
Exploring --> Creative
}
state Transition {
SaveState: Save State (5ms)
Transform: Transform UI (10ms)
LoadServices: Load Services (0ms)
UpdateCmd: Update Commands (1ms)
}
state StructuredMode {
[*] --> Planning
Planning --> Implementing
Implementing --> Reviewing
Reviewing --> Planning
}
VibeMode --> Transition: < 16ms
Transition --> StructuredMode: (one frame)
StructuredMode --> Transition: < 16ms
Transition --> VibeMode: (one frame)
gantt
title Mode Switch Performance (< 16ms)
dateFormat X
axisFormat %L ms
section Vibe to Structured
Save current state :a1, 0, 5
Begin UI transform :a2, after a1, 3
Morph layout :a3, after a2, 5
Swap command sets :a4, after a3, 2
Complete transition :a5, after a4, 1
section UI Changes
Hide Vibe panels :done, 0, 5
Show Structured panels :active, 5, 5
Update activity bar :active, 10, 3
Refresh explorer :active, 13, 3
graph TB
subgraph "Cursor's Limitations"
E1[Extension 1] -.->|Cannot| UI[Modify Core UI]
E2[Extension 2] -.->|Cannot| AB[Change Activity Bar]
E3[Extension 3] -.->|Cannot| CP[Override Commands]
E4[Extension 4] -.->|Cannot| SM[Share Memory]
E5[Extension 5] -.->|Cannot| FS[Direct FS Access]
Note[Extensions are sandboxed<br/>No mode concept<br/>No UI morphing]
end
subgraph "Ulpi's Capabilities"
UC[Ulpi Core] -->|Can| MUI[Morph Entire UI]
UC -->|Can| SAB[Swap Activity Bar]
UC -->|Can| RCP[Replace Commands]
UC -->|Can| SSM[Share All Memory]
UC -->|Can| DFS[Direct Everything]
Note2[Built-in = Full Control<br/>Instant mode switches<br/>Seamless experience]
end
style UI fill:#ff6b6b
style AB fill:#ff6b6b
style CP fill:#ff6b6b
style SM fill:#ff6b6b
style FS fill:#ff6b6b
style MUI fill:#51cf66
style SAB fill:#51cf66
style RCP fill:#51cf66
style SSM fill:#51cf66
style DFS fill:#51cf66
pie title "Cursor Memory Usage - 2,600MB Total"
"Base VSCode" : 500
"cursor-always-local" : 400
"cursor-retrieval" : 300
"cursor-tokenize" : 200
"cursor-shadow" : 300
"cursor-deeplink" : 100
"Duplicate Caches" : 800
pie title "Ulpi Memory Usage - 1,850MB Total (30% Less)"
"Base VSCode" : 500
"Shared AST Cache" : 200
"Shared Embeddings" : 300
"Shared Indices" : 150
"File Memory Maps" : 400
"Model Memory" : 300
graph TB
subgraph "Cursor - Isolated Memory Spaces"
CE1[Extension 1<br/>400MB]
CE2[Extension 2<br/>300MB]
CE3[Extension 3<br/>200MB]
CE4[Extension 4<br/>300MB]
CE5[Extension 5<br/>100MB]
CE1 --> C1[Cache 1]
CE2 --> C2[Cache 2]
CE3 --> C3[Cache 3]
CE4 --> C4[Cache 4]
CE5 --> C5[Cache 5]
Note1[Each extension has<br/>its own cache]
end
subgraph "Ulpi - Unified Memory Space"
USC[Unified Shared Cache<br/>850MB Total]
S1[Service 1]
S2[Service 2]
S3[Service 3]
S4[Service 4]
S5[Service 5]
S1 --> USC
S2 --> USC
S3 --> USC
S4 --> USC
S5 --> USC
Note2[All services share<br/>one cache]
end
style CE1 fill:#ffd43b
style CE2 fill:#ffd43b
style CE3 fill:#ffd43b
style CE4 fill:#ffd43b
style CE5 fill:#ffd43b
style USC fill:#51cf66
gantt
title Startup Performance Comparison
dateFormat X
axisFormat %L ms
section Cursor
VSCode starts :c1, 0, 500
Extensions loading :c2, after c1, 500
cursor-always-local :c3, after c2, 500
cursor-retrieval :c4, after c3, 500
cursor-tokenize :c5, after c4, 500
cursor-shadow :c6, after c5, 500
All extensions ready :c7, after c6, 500
Workspace indexing :c8, after c7, 4500
Ready for use :milestone, after c8, 0
section Ulpi
VSCode + Ulpi starts :u1, 0, 50
Critical UI ready :u2, after u1, 50
Core services init :u3, after u2, 100
Mode UI loaded :u4, after u3, 100
Background indexing :u5, after u4, 200
Ready for use :milestone, after u5, 0
Progressive enhancement :u6, after u5, 1500
Full intelligence :milestone, after u6, 0
flowchart TB
subgraph "Cursor Startup - 8 seconds"
CS1[VSCode Core<br/>500ms] --> CS2[Extension Host<br/>500ms]
CS2 --> CS3[Load Extension 1<br/>500ms]
CS3 --> CS4[Load Extension 2<br/>500ms]
CS4 --> CS5[Load Extension 3<br/>500ms]
CS5 --> CS6[Load Extension 4<br/>500ms]
CS6 --> CS7[Load Extension 5<br/>500ms]
CS7 --> CS8[Initialize All<br/>500ms]
CS8 --> CS9[Index Workspace<br/>4500ms]
CS9 --> CS10[Ready<br/>8000ms total]
end
subgraph "Ulpi Startup - 0.5 seconds"
US1[VSCode + Ulpi<br/>50ms] --> US2[Critical UI<br/>50ms]
US2 --> US3[Core Services<br/>100ms]
US3 --> US4[Mode UI<br/>100ms]
US4 --> US5[Background Tasks<br/>200ms]
US5 --> US6[Ready to Use<br/>500ms total]
US6 -.-> US7[Progressive Loading<br/>Continues in background]
end
style CS10 fill:#ffd43b
style US6 fill:#51cf66
graph TB
subgraph "Scenario 1: Opening Large Project"
C1[Cursor: 30-60s] --> CI1[π΄ Wait...]
U1[Ulpi: 2-5s] --> UI1[π Start coding]
end
subgraph "Scenario 2: Searching for Function"
C2[Cursor: 200-500ms] --> CI2[β³ Noticeable delay]
U2[Ulpi: 5-10ms] --> UI2[β‘ Instant]
end
subgraph "Scenario 3: AI Completions"
C3[Cursor: 200-800ms] --> CI3[π€ Thinking...]
U3[Ulpi: 10-50ms] --> UI3[π Natural flow]
end
subgraph "Scenario 4: File Navigation"
C4[Cursor: 50-100ms] --> CI4[π Loading...]
U4[Ulpi: <1ms] --> UI4[π Seamless]
end
subgraph "Scenario 5: Large Refactor"
C5[Cursor: Constant delays] --> CI5[π Frustrating]
U5[Ulpi: Real-time] --> UI5[β¨ Smooth]
end
style U1 fill:#51cf66
style U2 fill:#51cf66
style U3 fill:#51cf66
style U4 fill:#51cf66
style U5 fill:#51cf66
style C1 fill:#ff6b6b
style C2 fill:#ffd43b
style C3 fill:#ffd43b
style C4 fill:#ffd43b
style C5 fill:#ff6b6b
timeline
title Developer Experience Throughout the Day
section Morning
Cursor : Open project (wait 45s)
: Search for main function (300ms)
: Get first completion (500ms)
: Switch files (100ms each)
Ulpi : Open project (ready in 3s)
: Search for main function (5ms)
: Get first completion (20ms)
: Switch files (instant)
section Afternoon
Cursor : Large refactor (constant 200ms delays)
: Search across codebase (400ms each)
: AI suggestions (600ms average)
: Debug with AI help (800ms)
Ulpi : Large refactor (real-time updates)
: Search across codebase (10ms each)
: AI suggestions (30ms average)
: Debug with AI help (50ms)
section Evening
Cursor : Review day's work (reload delays)
: Final searches (getting slower)
: Memory usage high (swapping)
: Close project (cleanup wait)
Ulpi : Review day's work (instant)
: Final searches (still 10ms)
: Memory usage stable
: Close project (instant)
- Every operation feels instant
- No loading states needed
- Smooth 60fps animations
- Pre-computed insights available instantly
- Richer analysis due to shared context
- Cross-feature intelligence sharing
- 100+ AI models via Ulpi Cloud + OpenRouter
- Handles million-file codebases
- Performance doesn't degrade with size
- Adaptive to system resources
- Automatic model selection based on load
- No wait times interrupt flow
- Predictive features feel magical
- Mode switching is seamless
- Best AI model for each specific task
- Bundled local models for offline and instant responses (Phi-3.5, CodeLlama-7B, etc.)
- 41+ cloud models via OpenRouter integration (16 open + 11 proprietary + more coming)
- Task-specific routing (CodeLlama for generation, Claude for review, DeepSeek for analysis)
- Cost optimization - 80% of requests handled by free bundled models
- IP Protection - All prompts and routing logic secured in Ulpi Cloud
- No vendor lock-in - unlike Cursor's fixed GPT-4/Claude model set
Ulpi's built-in architecture provides fundamental performance advantages that Cursor's extension-based approach cannot match. By eliminating all middleware, sharing resources, and pre-computing intelligence, Ulpi delivers an IDE experience that feels impossibly fast.
The combination of:
- 10-100x faster operations through direct integration
- 41+ AI models (5 bundled locally + 36 via OpenRouter) vs Cursor's 2-3 models
- Instant local responses with bundled models (0-10ms)
- All tools bundled locally for zero-latency execution
- IP Protection via Ulpi Cloud API for prompts and routing logic
- Unique dual-mode system (Vibe and Structured)
- Zero-overhead architecture with shared memory
...positions Ulpi as the next generation of AI-powered development environments.
The performance improvements aren't just numbers - they represent the difference between a tool that keeps up with thought and one that constantly interrupts it. While Cursor has expanded to ~22 cloud-based models with its 38 tools, Ulpi takes a smarter approach:
- Smart caching for instant responses (0-5ms) on common patterns
- 41+ cloud models via OpenRouter without local resource competition
- Protected intellectual property with prompts secured in the cloud
- Zero-latency tool execution with everything bundled locally
- Code-specialized models like CodeLlama-34B, Codestral-22B, DeepSeek-Coder V2
The critical difference: Both Cursor and Ulpi use cloud models, but Ulpi's smart caching delivers instant responses for 60% of requests while keeping the IDE fast by not running resource-hungry local models. This architecture ensures Ulpi provides both superior performance and access to more specialized models than Cursor.