Last active
August 30, 2024 20:52
-
-
Save ClarkeRemy/678a9dd85cc366c6987d5a60aa84eaf7 to your computer and use it in GitHub Desktop.
Rust Recursion schemes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#![allow(unused)] | |
use std::{borrow::Borrow, convert::Infallible}; | |
trait Functor { | |
type F<T>; | |
fn fmap<A, B>(f: impl Fn(A) -> B, x: Self::F<A>) -> Self::F<B>; | |
} | |
trait Rec: Sized { | |
type Fix; | |
type F: Functor; | |
fn fmap<A, B>(f: impl Fn(A) -> B) -> impl Fn(<Self::F as Functor>::F<A>) -> <Self::F as Functor>::F<B> { | |
move |x| <Self::F as Functor>::fmap(&f, x) | |
} | |
fn prj(t: Self::Fix) -> <Self::F as Functor>::F<Self::Fix>; | |
fn inj(t: <Self::F as Functor>::F<Self::Fix>) -> Self::Fix; | |
// these should be in an extension trait | |
fn fmap_ref<A>(x: &<Self::F as Functor>::F<A>) -> <Self::F as Functor>::F<&A>; | |
} | |
fn cata<R: Rec, Ret>(alg: impl Fn(RecF<R, Ret>) -> Ret) -> impl Fn(R::Fix) -> Ret { | |
fn cata_<'a, R: Rec, Ret>(alg: &'a impl Fn(RecF<R, Ret>) -> Ret) -> impl Fn(R::Fix) -> Ret + 'a { | |
move |x| alg(R::fmap(cata_::<R, Ret>(alg))(R::prj(x))) | |
} | |
move |x| cata_::<R, Ret>(&alg)(x) | |
} | |
type RecF<R, T> = <<R as Rec>::F as Functor>::F<T>; | |
fn ana<R: Rec, Seed>(coalg: impl Fn(Seed) -> RecF<R, Seed>) -> impl Fn(Seed) -> R::Fix { | |
fn ana_<'a, R: Rec, Seed>(coalg: &'a impl Fn(Seed) -> RecF<R, Seed>) -> impl Fn(Seed) -> R::Fix + 'a { | |
move |x| R::inj(R::fmap(ana_::<R, Seed>(coalg))(coalg(x))) | |
} | |
move |x| ana_::<R, Seed>(&coalg)(x) | |
} | |
fn hylo<R: Rec, Seed, Ret>(alg: impl Fn(RecF<R, Ret>) -> Ret, coalg: impl Fn(Seed) -> RecF<R, Seed>) -> impl Fn(Seed) -> Ret { | |
fn hylo_<'a, 'b, R: Rec, Seed, Ret>(alg: &'a impl Fn(RecF<R, Ret>) -> Ret, coalg: &'a impl Fn(Seed) -> RecF<R, Seed>) -> impl Fn(Seed) -> Ret + 'a { | |
move |x| alg(R::fmap(hylo_::<R, Seed, Ret>(alg, coalg))(coalg(x))) | |
} | |
move |x| hylo_::<R,Seed, Ret>(&alg, &coalg)(x) | |
} | |
fn accumulation<R: Rec, Acc, Ret>(st: impl Fn(RecF<R, R::Fix>, &Acc) -> RecF<R, (R::Fix, Acc)>, alg: impl Fn(RecF<R, Ret>, Acc) -> Ret) -> impl Fn((R::Fix, Acc)) -> Ret { | |
fn accumulation_<'a, R: Rec, Acc, Ret>(st: &'a impl Fn(RecF<R, R::Fix>, &Acc) -> RecF<R, (R::Fix, Acc)>, alg: &'a impl Fn(RecF<R, Ret>, Acc) -> Ret) -> impl Fn((R::Fix, Acc)) -> Ret +'a { | |
move |(x, acc)| alg(R::fmap(accumulation_::<R, Acc, Ret>(st, alg))(st(R::prj(x), &acc)), acc) | |
} | |
move |x| accumulation_::<R,Acc,Ret>(&st, &alg)(x) | |
} | |
/// the mutumorphism is different than in the literature in that it computes both mutually recursive functions | |
/// and returns both results of both. | |
/// This is the most reasonable way to do with without introducing the Clone trait. | |
/// So this is limited to having a consuming function, and an inspecting function | |
fn mutu<R: Rec, A, B>(alg1: impl Fn(RecF<R, (A, B)>) -> A, alg2: impl Fn(&RecF<R, (A, B)>) -> B) -> impl Fn(R::Fix) -> (A, B) { | |
cata::<R, (A, B)>(move |x| { | |
let alg2_ = alg2(&x); | |
(alg1(x), alg2_) | |
}) | |
} | |
// This function cannot be used as is naively, it can only be used efficiently with | |
// persistant datatypes | |
fn para<R: Rec, Ret>(alg: impl Fn(RecF<R, (R::Fix, Ret)>) -> Ret) -> impl Fn(R::Fix) -> Ret | |
where | |
R::Fix: Clone, | |
{ | |
fn para_<'a, R: Rec, Ret>(alg: &'a impl Fn(RecF<R, (R::Fix, Ret)>) -> Ret) -> impl Fn(R::Fix) -> Ret + 'a | |
where | |
R::Fix: Clone, { | |
move |x|{ | |
let map = move |y: R::Fix| (y.clone(), para_::<R, Ret>(alg)(y)); | |
alg(R::fmap(map)(R::prj(x))) | |
} | |
} | |
move |x| para_::<R,Ret>(&alg)(x) | |
} | |
trait RecPrjRef: Rec { | |
fn prj_ref(t: &Self::Fix) -> <Self::F as Functor>::F<&Self::Fix>; | |
} | |
fn para_ref<R: RecPrjRef, Ret>(alg: impl Fn(RecF<R, (&R::Fix, Ret)>) -> Ret) -> impl Fn(&R::Fix) -> Ret { | |
fn para_ref_<'a, R: RecPrjRef, Ret>(alg: &'a impl Fn(RecF<R, (&R::Fix, Ret)>) -> Ret) -> impl Fn(&R::Fix) -> Ret + 'a { | |
move |x| alg(R::fmap(|y| (y, para_ref_::<R, Ret>(alg)(y)))(R::prj_ref(x))) | |
} | |
move|x| para_ref_::<R,Ret>(&alg)(x) | |
} | |
fn apo<R: Rec, Seed>(coalg: impl Fn(Seed) -> RecF<R, std::ops::ControlFlow<R::Fix, Seed>>) -> impl Fn(Seed) -> R::Fix { | |
move |x| { | |
let coalg = &coalg; | |
R::inj(R::fmap(move |y| match y { | |
std::ops::ControlFlow::Continue(x) => apo::<R, Seed>(coalg)(x), | |
std::ops::ControlFlow::Break(x) => x, | |
})(coalg(x))) | |
} | |
} | |
fn zygo<R: Rec, Ret, Aux>(alg1: impl Fn(RecF<R, (Ret, Aux)>) -> Ret, alg2: impl Fn(RecF<R, &Aux>) -> Aux) -> impl Fn(R::Fix) -> Ret | |
where | |
Aux: Clone, | |
{ | |
move |x| mutu::<R, Ret, Aux>(&alg1, |y| alg2(R::fmap(|(_, a): &(_, _)| a)(R::fmap_ref(y))))(x).0 | |
} | |
enum Free<F: Functor, A> { | |
Ret(A), | |
Op(F::F<Free<F, A>>), | |
} | |
impl<F: Functor, A> Free<F, A> { | |
fn advance(coalg: impl Fn(A) -> F::F<Self>) -> impl Fn(Self) -> F::F<Self> { | |
move |x| match x { | |
Free::Ret(a) => coalg(a), | |
Free::Op(k) => k, | |
} | |
} | |
} | |
struct Cofree<F: Functor, A> { | |
tag: A, | |
cofree: F::F<Cofree<F, A>>, | |
} | |
impl<F: Functor, A> Cofree<F, A> { | |
fn extract(self) -> A { | |
self.tag | |
} | |
fn extend(alg: impl Fn(&F::F<Self>) -> A) -> impl Fn(F::F<Self>) -> Self { | |
move |x| Cofree { tag: alg(&x), cofree: x } | |
} | |
} | |
fn histo<R: Rec, Ret>(alg: impl Fn(&RecF<R, Cofree<R::F, Ret>>) -> Ret) -> impl Fn(R::Fix) -> Ret { | |
move |x| Cofree::extract(cata::<R, Cofree<R::F, Ret>>(Cofree::extend(&alg))(x)) | |
} | |
fn dyna<R: Rec, Seed, Ret>(alg: impl Fn(&RecF<R, Cofree<R::F, Ret>>) -> Ret, coalg: impl Fn(Seed) -> RecF<R, Seed>) -> impl Fn(Seed) -> Ret { | |
move |x| Cofree::extract(hylo::<R, Seed, Cofree<R::F, Ret>>(Cofree::extend(&alg), &coalg)(x)) | |
} | |
fn futu<R: Rec, Seed>(coalg: impl Fn(Seed) -> RecF<R, Free<R::F, Seed>>) -> impl Fn(Seed) -> R::Fix { | |
move |x| { | |
let coalg = &coalg; | |
ana::<R, _>(Free::<R::F, Seed>::advance(coalg))(Free::<R::F, Seed>::Ret(x)) | |
} | |
} | |
#[derive(Debug)] | |
pub enum BinaryTree { | |
Leaf(i32), | |
Branch(Box<BinaryTree>, Box<BinaryTree>), | |
} | |
fn l(i: i32) -> BinaryTree { | |
BinaryTree::Leaf(i) | |
} | |
fn b(l: BinaryTree, r: BinaryTree) -> BinaryTree { | |
BinaryTree::Branch(Box::new(l), Box::new(r)) | |
} | |
pub enum FBinaryTree<T = Infallible> { | |
Leaf(i32), | |
Branch(T, T), | |
} | |
impl Functor for FBinaryTree { | |
type F<T> = FBinaryTree<T>; | |
fn fmap<A, B>(f: impl Fn(A) -> B, x: Self::F<A>) -> Self::F<B> { | |
match x { | |
FBinaryTree::Leaf(n) => FBinaryTree::Leaf(n), | |
FBinaryTree::Branch(l, r) => FBinaryTree::Branch(f(l), f(r)), | |
} | |
} | |
} | |
impl Rec for BinaryTree { | |
type Fix = Self; | |
type F = FBinaryTree; | |
fn inj(t: <Self::F as Functor>::F<Self>) -> Self { | |
match t { | |
FBinaryTree::Leaf(n) => BinaryTree::Leaf(n), | |
FBinaryTree::Branch(l, r) => BinaryTree::Branch(Box::new(l), Box::new(r)), | |
} | |
} | |
fn prj(t: Self) -> <Self::F as Functor>::F<Self> { | |
match t { | |
BinaryTree::Leaf(n) => FBinaryTree::Leaf(n), | |
BinaryTree::Branch(l, r) => FBinaryTree::Branch(*l, *r), | |
} | |
} | |
fn fmap_ref<A>(x: &<Self::F as Functor>::F<A>) -> <Self::F as Functor>::F<&A> { | |
match x { | |
FBinaryTree::Leaf(n) => FBinaryTree::Leaf(*n), | |
FBinaryTree::Branch(l, r) => FBinaryTree::Branch(l, r), | |
} | |
} | |
} | |
enum Nat<T = Infallible> { | |
S(T), | |
Z, | |
} | |
impl Functor for Nat { | |
type F<T> = Nat<T>; | |
fn fmap<A, B>(f: impl Fn(A) -> B, x: Self::F<A>) -> Self::F<B> { | |
match x { | |
Nat::S(n) => Nat::S(f(n)), | |
Nat::Z => Nat::Z, | |
} | |
} | |
} | |
impl Rec for u8 { | |
type Fix = Self; | |
type F = Nat; | |
fn prj(t: Self) -> <Self::F as Functor>::F<Self> { | |
match t { | |
0 => Nat::Z, | |
n => Nat::S(n - 1), | |
} | |
} | |
fn inj(t: <Self::F as Functor>::F<Self>) -> Self { | |
match t { | |
Nat::S(n) => n + 1, | |
Nat::Z => 0, | |
} | |
} | |
fn fmap_ref<A>(x: &<Self::F as Functor>::F<A>) -> <Self::F as Functor>::F<&A> { | |
match x { | |
Nat::S(n) => Nat::S(n), | |
Nat::Z => Nat::Z, | |
} | |
} | |
} | |
fn g() { | |
let tree_ = ana::<BinaryTree, i32>(&|x| match x { | |
0 => FBinaryTree::Leaf(0), | |
b => FBinaryTree::Branch(b / 2, b / 2), | |
})(10); | |
println!("tree : {tree_:#?}"); | |
// let count = cata_::<BinaryTree,usize>( | |
// &|x| match x { | |
// FBinaryTree::Leaf(_) => 1, | |
// FBinaryTree::Branch(l, r) => l+r, | |
// })(tree_); | |
// println!("count : {count:?}"); | |
let n = ana::<u8, BinaryTree>(&|x| match x { | |
BinaryTree::Leaf(_) => Nat::Z, | |
BinaryTree::Branch(l, r) => match *l { | |
BinaryTree::Leaf(_) => Nat::S(*r), | |
BinaryTree::Branch(l1, r1) => Nat::S(b(*l1, b(*r1, *r))), | |
}, | |
})(tree_); | |
// println!("n : {n:?}"); | |
let double = cata::<u8, u16>(|x| match x { | |
Nat::S(n) => { | |
println!("S"); | |
2 + n | |
} | |
Nat::Z => { | |
println!("Z"); | |
0 | |
} | |
})(n); | |
println!("double : {double:?}"); | |
let wtf = cata::<u8, Box<dyn FnOnce(u16) -> u16>>(|x| match x { | |
Nat::S(f) => Box::new(|x| f(x + 2)), | |
Nat::Z => Box::new(|x| x), | |
})(n); | |
println!("wtf(0) : {:?}", wtf(0)); | |
let tree = b(b(l(1), l(2)), b(b(l(3), l(4)), l(5))); | |
let sum = cata::<BinaryTree, Box<dyn FnOnce(isize) -> isize>>(|x| match x { | |
FBinaryTree::Leaf(n) => Box::new(move |x| { | |
println!("L"); | |
x + n as isize | |
}), | |
FBinaryTree::Branch(l, r) => Box::new(|x| { | |
println!("B"); | |
l(r(x)) | |
}), | |
})(tree); | |
println!("sum : {}", sum(0)); | |
} | |
fn main() { | |
g() | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment