Skip to content

Instantly share code, notes, and snippets.

@ClashLuke
Created November 5, 2024 12:04
Show Gist options
  • Save ClashLuke/39215e681aa2092be767533377b7cfd3 to your computer and use it in GitHub Desktop.
Save ClashLuke/39215e681aa2092be767533377b7cfd3 to your computer and use it in GitHub Desktop.
SOAP Toy problem (identity)
import torch
import torch.nn as nn
import torch.optim as optim
from itertools import chain
# Parts of the code are modifications of Pytorch's AdamW optimizer
# Parts of the code are modifications of code from https://github.com/jiaweizzhao/GaLore/blob/master/galore_torch/galore_projector.py
class SOAP(optim.Optimizer):
"""
Implements SOAP algorithm (https://arxiv.org/abs/2409.11321).
Parameters:
params (`Iterable[nn.parameter.Parameter]`):
Iterable of parameters to optimize or dictionaries defining parameter groups.
lr (`float`, *optional*, defaults to 0.003):
The learning rate to use.
betas (`Tuple[float,float]`, *optional*, defaults to `(0.95, 0.95)`):
Adam's betas parameters (b1, b2).
shampoo_beta (`float`, *optional*, defaults to -1):
If >= 0, use this beta for the preconditioner (L and R in paper, state['GG'] below) moving average instead of betas[1].
eps (`float`, *optional*, defaults to 1e-08):
Adam's epsilon for numerical stability.
weight_decay (`float`, *optional*, defaults to 0.01): weight decay coefficient.
precondition_frequency (`int`, *optional*, defaults to 10):
How often to update the preconditioner.
max_precond_dim (`int`, *optional*, defaults to 10000):
Maximum dimension of the preconditioner.
Set to 10000, so that we exclude most common vocab sizes while including layers.
merge_dims (`bool`, *optional*, defaults to `False`):
Whether or not to merge dimensions of the preconditioner.
precondition_1d (`bool`, *optional*, defaults to `False`):
Whether or not to precondition 1D gradients.
normalize_grads (`bool`, *optional*, defaults to `False`):
Whether or not to normalize gradients per layer.
Helps at large precondition_frequency (~100 in our experiments),
but hurts performance at small precondition_frequency (~10 in our experiments).
data_format (`str`, *optional*, defaults to `channels_first`):
Data format of the input for convolutional layers.
Should be "channels_last" for data_format of NHWC and "channels_first" for NCHW.
correct_bias (`bool`, *optional*, defaults to `True`):
Whether or not to use bias correction in Adam.
"""
def __init__(
self,
params,
lr: float = 3e-3,
betas=(0.95, 0.95),
shampoo_beta: float= -1,
eps: float = 1e-8,
weight_decay: float = 0.01,
precondition_frequency: int=10,
max_precond_dim: int=10000, #
merge_dims: bool = False, # Merge dimensions till the product of the dimensions is less than or equal to max_precond_dim.
precondition_1d: bool = False,
normalize_grads: bool = False,
data_format: str = "channels_first",
correct_bias: bool = True,
):
defaults = {
"lr": lr,
"betas": betas,
"shampoo_beta": shampoo_beta,
"eps": eps,
"weight_decay": weight_decay,
"precondition_frequency": precondition_frequency,
"max_precond_dim": max_precond_dim,
"merge_dims": merge_dims,
"precondition_1d": precondition_1d,
"normalize_grads": normalize_grads,
"correct_bias": correct_bias,
}
super().__init__(params, defaults)
self._data_format = data_format
def merge_dims(self, grad, max_precond_dim):
"""
Merges dimensions of the gradient tensor till the product of the dimensions is less than or equal to max_precond_dim.
"""
assert self._data_format in ["channels_first", "channels_last"]
if self._data_format == "channels_last" and grad.dim() == 4:
grad = grad.permute(0, 3, 1, 2)
shape = grad.shape
new_shape = []
curr_shape = 1
for sh in shape:
temp_shape = curr_shape * sh
if temp_shape > max_precond_dim:
if curr_shape > 1:
new_shape.append(curr_shape)
curr_shape = sh
else:
new_shape.append(sh)
curr_shape = 1
else:
curr_shape = temp_shape
if curr_shape > 1 or len(new_shape)==0:
new_shape.append(curr_shape)
new_grad = grad.reshape(new_shape)
return new_grad
@torch.no_grad()
def step(self):
"""
Performs a single optimization step.
Arguments:
closure (`Callable`, *optional*): A closure that reevaluates the model and returns the loss.
"""
loss = None
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad
state = self.state[p]
if "step" not in state:
state["step"] = 0
# State initialization
if "exp_avg" not in state:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(grad)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(grad)
if 'Q' not in state:
self.init_preconditioner(
grad,
state,
precondition_frequency=group['precondition_frequency'],
precondition_1d=group['precondition_1d'],
shampoo_beta=(group['shampoo_beta'] if group['shampoo_beta'] >= 0 else group["betas"][1]),
max_precond_dim=group['max_precond_dim'],
merge_dims=group["merge_dims"],
)
self.update_preconditioner(grad, state,
max_precond_dim=group['max_precond_dim'],
merge_dims=group["merge_dims"],
precondition_1d=group["precondition_1d"])
continue # first step is skipped so that we never use the current gradients in the projection.
# Projecting gradients to the eigenbases of Shampoo's preconditioner
# i.e. projecting to the eigenbases of matrices in state['GG']
grad_projected = self.project(grad, state, merge_dims=group["merge_dims"],
max_precond_dim=group['max_precond_dim'])
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
state["step"] += 1
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
exp_avg.mul_(beta1).add_(grad, alpha=(1.0 - beta1))
exp_avg_sq.mul_(beta2).add_(grad_projected.square(), alpha=(1.0 - beta2))
denom = exp_avg_sq.sqrt().add_(group["eps"])
# Projecting the exponential moving average of gradients to the eigenbases of Shampoo's preconditioner
# i.e. projecting to the eigenbases of matrices in state['GG']
exp_avg_projected = self.project(exp_avg, state, merge_dims=group["merge_dims"],
max_precond_dim=group['max_precond_dim'])
step_size = group["lr"]
if group["correct_bias"]:
bias_correction1 = 1.0 - beta1 ** (state["step"])
bias_correction2 = 1.0 - beta2 ** (state["step"])
step_size = step_size * (bias_correction2 ** .5) / bias_correction1
# Projecting back the preconditioned (by Adam) exponential moving average of gradients
# to the original space
norm_grad = self.project_back(exp_avg_projected / denom, state, merge_dims=group["merge_dims"],
max_precond_dim=group['max_precond_dim'])
if group["normalize_grads"]:
norm_grad = norm_grad / (1e-30+torch.mean(norm_grad**2)**0.5)
p.add_(norm_grad, alpha=-step_size)
# From AdamW code: Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
# Add weight decay at the end (fixed version)
if group["weight_decay"] > 0.0:
p.add_(p, alpha=(-group["lr"] * group["weight_decay"]))
# Update is done after the gradient step to avoid using current gradients in the projection.
self.update_preconditioner(grad, state,
max_precond_dim=group['max_precond_dim'],
merge_dims=group["merge_dims"],
precondition_1d=group["precondition_1d"])
return loss
def init_preconditioner(self, grad, state, precondition_frequency=10,
shampoo_beta=0.95, max_precond_dim=10000, precondition_1d=False,
merge_dims=False):
"""
Initializes the preconditioner matrices (L and R in the paper).
"""
state['GG'] = [] # Will hold all the preconditioner matrices (L and R in the paper).
if grad.dim() == 1:
if not precondition_1d or grad.shape[0] > max_precond_dim:
state['GG'].append([])
else:
state['GG'].append(torch.zeros(grad.shape[0], grad.shape[0], device=grad.device))
else:
if merge_dims:
grad = self.merge_dims(grad, max_precond_dim)
for sh in grad.shape:
if sh > max_precond_dim:
state['GG'].append([])
else:
state['GG'].append(torch.zeros(sh, sh, device=grad.device))
state['Q'] = None # Will hold all the eigenbases of the preconditioner.
state['precondition_frequency'] = precondition_frequency
state['shampoo_beta'] = shampoo_beta
def project(self, grad, state, merge_dims=False, max_precond_dim=10000):
"""
Projects the gradient to the eigenbases of the preconditioner.
"""
original_shape = grad.shape
if merge_dims:
if grad.dim() == 4 and self._data_format == 'channels_last':
permuted_shape = grad.permute(0, 3, 1, 2).shape
grad = self.merge_dims(grad, max_precond_dim)
for mat in state['Q']:
if len(mat) > 0:
grad = torch.tensordot(
grad,
mat,
dims=[[0], [0]],
)
else:
permute_order = list(range(1, len(grad.shape))) + [0]
grad = grad.permute(permute_order)
if merge_dims:
if self._data_format == 'channels_last' and len(original_shape) == 4:
grad = grad.reshape(permuted_shape).permute(0, 2, 3, 1)
else:
grad = grad.reshape(original_shape)
return grad
def update_preconditioner(self, grad, state,
max_precond_dim=10000, merge_dims=False, precondition_1d=False):
"""
Updates the preconditioner matrices and the eigenbases (L, R, Q_L, Q_R in the paper).
"""
if grad.dim() == 1:
if precondition_1d and grad.shape[0] <= max_precond_dim:
state['GG'][0].lerp_(grad.unsqueeze(1) @ grad.unsqueeze(0), 1-state['shampoo_beta'])
else:
if merge_dims:
new_grad = self.merge_dims(grad, max_precond_dim)
for idx, sh in enumerate(new_grad.shape):
if sh <= max_precond_dim:
outer_product = torch.tensordot(
new_grad,
new_grad,
dims=[[*chain(range(idx), range(idx + 1, len(new_grad.shape)))]] * 2,
)
state['GG'][idx].lerp_(outer_product, 1-state['shampoo_beta'])
else:
for idx, sh in enumerate(grad.shape):
if sh <= max_precond_dim:
outer_product = torch.tensordot(
grad,
grad,
# Contracts across all dimensions except for k.
dims=[[*chain(range(idx), range(idx + 1, len(grad.shape)))]] * 2,
)
state['GG'][idx].lerp_(outer_product, 1-state['shampoo_beta'])
if state['Q'] is None:
state['Q'] = self.get_orthogonal_matrix(state['GG'])
if state['step'] > 0 and state['step'] % state['precondition_frequency'] == 0:
state['Q'] = self.get_orthogonal_matrix_QR(state, max_precond_dim, merge_dims)
def project_back(self, grad, state, merge_dims=False, max_precond_dim=10000):
"""
Projects the gradient back to the original space.
"""
original_shape = grad.shape
if merge_dims:
if self._data_format == 'channels_last' and grad.dim() == 4:
permuted_shape = grad.permute(0, 3, 1, 2).shape
grad = self.merge_dims(grad, max_precond_dim)
for mat in state['Q']:
if len(mat) > 0:
grad = torch.tensordot(
grad,
mat,
dims=[[0], [1]],
)
else:
permute_order = list(range(1, len(grad.shape))) + [0]
grad = grad.permute(permute_order)
if merge_dims:
if self._data_format == 'channels_last' and len(original_shape) == 4:
grad = grad.reshape(permuted_shape).permute(0, 2, 3, 1)
else:
grad = grad.reshape(original_shape)
return grad
def get_orthogonal_matrix(self, mat):
"""
Computes the eigenbases of the preconditioner using torch.linalg.eigh decomposition.
"""
matrix = []
for m in mat:
if len(m) == 0:
matrix.append([])
continue
if m.data.dtype != torch.float:
float_data = False
original_type = m.data.dtype
original_device = m.data.device
matrix.append(m.data.float())
else:
float_data = True
matrix.append(m.data)
final = []
for m in matrix:
if len(m) == 0:
final.append([])
continue
try:
_, Q = torch.linalg.eigh(m+1e-30*torch.eye(m.shape[0], device=m.device))
except:
_, Q = torch.linalg.eigh(m.to(torch.float64)+1e-30*torch.eye(m.shape[0], device=m.device))
Q = Q.to(m.dtype)
Q = torch.flip(Q, [1])
if not float_data:
Q = Q.to(original_device).type(original_type)
final.append(Q)
return final
def get_orthogonal_matrix_QR(self, state, max_precond_dim=10000, merge_dims=False):
"""
Computes the eigenbases of the preconditioner using one round of power iteration
followed by torch.linalg.qr decomposition.
"""
precond_list = state['GG']
orth_list = state['Q']
matrix = []
orth_matrix = []
for m,o in zip(precond_list, orth_list):
if len(m) == 0:
matrix.append([])
orth_matrix.append([])
continue
if m.data.dtype != torch.float:
float_data = False
original_type = m.data.dtype
original_device = m.data.device
matrix.append(m.data.float())
orth_matrix.append(o.data.float())
else:
float_data = True
matrix.append(m.data.float())
orth_matrix.append(o.data.float())
orig_shape = state['exp_avg_sq'].shape
if self._data_format == 'channels_last' and len(orig_shape) == 4:
permuted_shape = state['exp_avg_sq'].permute(0, 3, 1, 2).shape
if merge_dims:
exp_avg_sq = self.merge_dims(state['exp_avg_sq'], max_precond_dim)
else:
exp_avg_sq = state['exp_avg_sq']
final = []
for ind, (m,o) in enumerate(zip(matrix, orth_matrix)):
if len(m)==0:
final.append([])
continue
est_eig = torch.diag(o.T @ m @ o)
sort_idx = torch.argsort(est_eig, descending=True)
exp_avg_sq = exp_avg_sq.index_select(ind, sort_idx)
o = o[:,sort_idx]
power_iter = m @ o
Q, _ = torch.linalg.qr(power_iter)
if not float_data:
Q = Q.to(original_device).type(original_type)
final.append(Q)
if merge_dims:
if self._data_format == 'channels_last' and len(orig_shape) == 4:
exp_avg_sq = exp_avg_sq.reshape(permuted_shape).permute(0, 2, 3, 1)
else:
exp_avg_sq = exp_avg_sq.reshape(orig_shape)
state['exp_avg_sq'] = exp_avg_sq
return final
import torch
import torch.nn as nn
import torch.optim as optim
from itertools import chain
from heavyball import PalmForEachSoap
from soap import SOAP
import datetime
from torch.backends import cudnn, cuda
steps = 100_000
size = 128
batch = 32
optimizers = [SOAP, PalmForEachSoap, optim.AdamW]
cudnn.benchmark = True
cudnn.deterministic = False
torch.use_deterministic_algorithms(False)
torch.set_float32_matmul_precision("high") # highest: FP32, high: TF32, medium: bf16
for opt in optimizers:
torch.manual_seed(0x1239121)
a = torch.compile(nn.Linear(size, size, bias=False).cuda(), mode='max-autotune')
try:
o = opt(a.parameters(), 0.01, betas=(0.9, 0.95), precondition_frequency=2, merge_dims=True)
except:
o = opt(a.parameters(), 0.01, betas=(0.9, 0.95), fused=True)
loss_mean = 0
start = datetime.datetime.now()
for i in range(steps):
inp = torch.randn((batch, size), device='cuda')
out = a(inp)
loss = (out - inp).square().mean()
loss.backward()
o.step()
o.zero_grad()
with torch.no_grad():
loss_mean += loss.detach() / steps
print(datetime.datetime.now() - start, opt.__name__, loss_mean.item())
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment