Last active
April 19, 2019 12:57
-
-
Save ClementPinard/270e910147119831014932f67fb1b5ea to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import division | |
from __future__ import print_function | |
import argparse | |
import math | |
import time | |
from tqdm import trange | |
import torch | |
from correlation_package.correlation import Correlation | |
TIME_SCALES = {'s': 1, 'ms': 1000, 'us': 1000000} | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-b', '--batch-size', type=int, default=16) | |
parser.add_argument('-k', '--kernel-size', type=int, default=3) | |
parser.add_argument('--patch', type=int, default=3) | |
parser.add_argument('--patch_dilation', type=int, default=2) | |
parser.add_argument('-c', '--channel', type=int, default=64) | |
parser.add_argument('--height', type=int, default=100) | |
parser.add_argument('-w', '--width', type=int, default=100) | |
parser.add_argument('-s', '--stride', type=int, default=2) | |
parser.add_argument('-p', '--pad', type=int, default=1) | |
parser.add_argument('--scale', choices=['s','ms','us'], default='us') | |
parser.add_argument('-r', '--runs', type=int, default=100) | |
args = parser.parse_args() | |
input1 = torch.randn(args.batch_size, | |
args.channel, | |
args.height, | |
args.width).cuda() | |
input2 = torch.randn(args.batch_size, | |
args.channel, | |
args.height, | |
args.width).cuda() | |
input1 = torch.autograd.Variable(input1, requires_grad=True) | |
input2 = torch.autograd.Variable(input2, requires_grad=True) | |
correlation_sampler = Correlation( | |
args.pad + int((args.patch*args.patch_dilation - 1) / 2), | |
args.kernel_size, | |
int((args.patch*args.patch_dilation - 1) / 2), | |
args.stride, | |
args.patch_dilation) | |
# Force CUDA initialization | |
output = correlation_sampler(input1, input2) | |
print(output.size()) | |
output.mean().backward() | |
forward_min = math.inf | |
forward_time = 0 | |
backward_min = math.inf | |
backward_time = 0 | |
for _ in trange(args.runs): | |
correlation_sampler.zero_grad() | |
start = time.time() | |
output = correlation_sampler(input1, input2) | |
elapsed = time.time() - start | |
forward_min = min(forward_min, elapsed) | |
forward_time += elapsed | |
start = time.time() | |
(output.mean()).backward() | |
elapsed = time.time() - start | |
backward_min = min(backward_min, elapsed) | |
backward_time += elapsed | |
scale = TIME_SCALES[args.scale] | |
forward_min *= scale | |
backward_min *= scale | |
forward_average = forward_time / args.runs * scale | |
backward_average = backward_time / args.runs * scale | |
print('Forward: {0:.3f}/{1:.3f} {4} | Backward {2:.3f}/{3:.3f} {4}'.format( | |
forward_min, forward_average, backward_min, backward_average, | |
args.scale)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment