Last active
September 2, 2020 16:57
-
-
Save ClementPinard/e7353dee56faf3f4c62f0753a2703568 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch, kornia, h5py, imageio | |
import matplotlib.pyplot as plt | |
import numpy as np | |
# This is a failure mode, with different aspect ratios | |
fname1 = '47698078_3766965066' | |
fname2 = '18698491_4586522698' | |
# This works | |
# fname1 = '271147142_778c4e7999_o' | |
# fname2 = '275191466_a33f8c30b7_o' | |
def get_K_Rt(K_: [3, 3], R: [3, 3], T: [3]): | |
B = 1 | |
# add batch dimension | |
K = K_[None] # [B, 3, 3] | |
R = R[None] # [B, 3, 3] | |
T = T[None, :, None] # [B, 3, 1] | |
Rt_3x4 = kornia.projection_from_Rt(R, T) | |
Rt = torch.zeros(B, 4, 4) | |
Rt[:, :3, :] = Rt_3x4 | |
Rt[:, 3, 3] = 1. | |
K_4x4 = torch.eye(4)[None] | |
K_4x4[:, :3, :3] = K | |
return K_4x4, Rt | |
def read_data(fname): | |
''' read the files and return a | |
* image tensor | |
* depth tensor | |
* kornia.PinholeCamera instance | |
''' | |
img = imageio.imread(f'data/images/{fname}.jpg') | |
img = torch.from_numpy(img).to(torch.float32) / 255 | |
with h5py.File(f'data/depth_maps/{fname}.h5', 'r') as hdf: | |
depth = torch.from_numpy(hdf['depth'][()]).to(torch.float32) | |
with h5py.File(f'data/calibration/calibration_{fname}.h5', 'r') as hdf: | |
K = torch.from_numpy(hdf['K'][()]).to(torch.float32) | |
R = torch.from_numpy(hdf['R'][()]).to(torch.float32) | |
T = torch.from_numpy(hdf['T'][()]).to(torch.float32) | |
K, Rt = get_K_Rt(K, R, T) | |
return img.unsqueeze(0), depth.unsqueeze(0), K, Rt | |
img1, dep1, K1, Rt1 = read_data(fname1) | |
img2, dep2, K2, Rt2 = read_data(fname2) | |
height1 = torch.Tensor(img1.shape[1]) | |
width1 = torch.Tensor(img1.shape[2]) | |
height2 = torch.Tensor(img2.shape[1]) | |
width2 = torch.Tensor(img2.shape[2]) | |
cam1 = kornia.geometry.camera.PinholeCamera(K1, Rt1, height1, width1) | |
cam2 = kornia.geometry.camera.PinholeCamera(K2, Rt2, height2, width2) | |
img1_bchw = img1.permute(0, 3, 1, 2) | |
img2_bchw = img2.permute(0, 3, 1, 2) | |
warp_12 = kornia.geometry.warp.depth_warp(cam2, cam1, dep1[:, None], img2_bchw, dep1.shape[1], dep1.shape[2]) | |
warp_21 = kornia.geometry.warp.depth_warp(cam1, cam2, dep2[:, None], img1_bchw, dep2.shape[1], dep2.shape[2]) | |
fig, axes = plt.subplots(2, 3, constrained_layout=True) | |
axes[0, 0].imshow(img1[0].numpy()) | |
axes[1, 0].imshow(img2[0].numpy()) | |
axes[0, 1].imshow(dep1[0].numpy()) | |
axes[1, 1].imshow(dep2[0].numpy()) | |
axes[0, 2].imshow(warp_12[0].permute(1, 2, 0).numpy()) | |
axes[1, 2].imshow(warp_21[0].permute(1, 2, 0).numpy()) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment