Created
July 16, 2024 05:02
-
-
Save Clybius/e44fc12504404adf3dd9e6bba563f572 to your computer and use it in GitHub Desktop.
XLOmniV2.4 Merge Recipe
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sd_mecha | |
from sd_mecha.hypers import Hyper | |
from sd_mecha.merge_methods import SameMergeSpace | |
from sd_mecha.extensions.merge_method import LiftFlag, convert_to_recipe | |
from sd_mecha.merge_space import MergeSpace | |
import torch | |
from torch import Tensor | |
from typing import Optional, Dict, Mapping, TypeVar | |
import functools | |
import math | |
import operator | |
sd_mecha.set_log_level() | |
RecipeNodeOrPath = sd_mecha.extensions.merge_method.RecipeNodeOrPath | |
path_to_node = sd_mecha.extensions.merge_method.path_to_node | |
DeltaMergeSpace = TypeVar("DeltaMergeSpace", bound=LiftFlag[MergeSpace.DELTA]) | |
subtract = sd_mecha.merge_methods.subtract | |
perpendicular_component = sd_mecha.merge_methods.perpendicular_component | |
add_perpendicular = sd_mecha.add_perpendicular | |
train_difference = sd_mecha.merge_methods.train_difference | |
add_difference_ties = sd_mecha.add_difference_ties | |
add_difference = sd_mecha.merge_methods.add_difference | |
clamp = sd_mecha.merge_methods.clamp | |
cosine_add_b = sd_mecha.cosine_add_b | |
cosine_add_a = sd_mecha.cosine_add_a | |
geometric_sum = sd_mecha.geometric_sum | |
multiply_quotient = sd_mecha.merge_methods.multiply_quotient | |
rotate = sd_mecha.merge_methods.rotate | |
ties_sum = sd_mecha.merge_methods.ties_sum | |
filter_top_k = sd_mecha.merge_methods.filter_top_k | |
dropout = sd_mecha.merge_methods.dropout | |
weighted_sum = sd_mecha.merge_methods.weighted_sum | |
slerp = sd_mecha.merge_methods.slerp | |
ties_with_dare = sd_mecha.ties_with_dare | |
ties_sum_with_dropout = sd_mecha.merge_methods.ties_sum_with_dropout | |
device = "cuda" | |
dtype = torch.float32 | |
from sd_mecha.hypers import Hyper | |
@convert_to_recipe | |
def train_difference_return_delta( | |
a: Tensor | SameMergeSpace, | |
b: Tensor | SameMergeSpace, | |
c: Tensor | SameMergeSpace, | |
*, | |
alpha: Hyper = 2.0, | |
**kwargs, | |
) -> Tensor | DeltaMergeSpace: | |
threshold = torch.maximum(torch.abs(a - c), torch.abs(b - c)) | |
dissimilarity = torch.clamp(torch.nan_to_num((c - a) * (b - c) / threshold**2, nan=0), 0) | |
return ((b - c) * alpha * dissimilarity) | |
merger = sd_mecha.RecipeMerger( | |
models_dir="/mnt/tsar/ComfyUI/models/checkpoints/SDXL/", | |
) | |
grouped_diffs_compass = [ | |
subtract(mobius, compass, device=device, dtype=dtype), | |
subtract(colorful, compass, device=device, dtype=dtype), | |
subtract(animagine, compass, device=device, dtype=dtype), | |
subtract(juggernaut, compass, device=device, dtype=dtype), | |
subtract(epicrealismxl, compass, device=device, dtype=dtype), | |
] | |
grouped_diffs_base = [ | |
subtract(mobius, base, device=device, dtype=dtype), | |
subtract(colorful, base, device=device, dtype=dtype), | |
subtract(animagine, base, device=device, dtype=dtype), | |
subtract(juggernaut, base, device=device, dtype=dtype), | |
subtract(epicrealismxl, base, device=device, dtype=dtype), | |
] | |
grouped_diffs_trained = [ | |
train_difference_return_delta(compass, mobius, base, device=device, dtype=dtype), | |
train_difference_return_delta(compass, colorful, base, device=device, dtype=dtype), | |
train_difference_return_delta(compass, animagine, base, device=device, dtype=dtype), | |
train_difference_return_delta(compass, juggernaut, base, device=device, dtype=dtype), | |
train_difference_return_delta(compass, epicrealismxl, base, device=device, dtype=dtype), | |
] | |
recipe = ties_with_dare(compass, *grouped_diffs_compass, alpha=1.0, k=1.0, probability=0.666667, apply_median=1.0, maxiter=100, no_rescale=1.0, vote_sgn=1.0, seed=80085, device="cpu", dtype=torch.float32) | |
recipe2 = ties_with_dare(recipe, *grouped_diffs_base, alpha=1.0, k=1.0, probability=0.666667, apply_median=1.0, maxiter=100, no_rescale=1.0, vote_sgn=1.0, seed=69, device="cpu", dtype=torch.float32) | |
recipe3 = ties_with_dare(recipe2, *grouped_diffs_trained, alpha=1.0, k=1.0, probability=0.666667, apply_median=1.0, maxiter=100, no_rescale=1.0, vote_sgn=1.0, seed=21, device="cpu", dtype=torch.float32) | |
recipe4 = slerp(recipe3, compass, alpha=( | |
sd_mecha.default("sdxl", "txt", 0.7) | | |
sd_mecha.default("sdxl", "txt2", 0.7) | | |
sd_mecha.default("sdxl", "unet", 0.0) | |
), device=device, dtype=dtype) | |
merger.merge_and_save(recipe4, output="XLOmniV2.4.safetensors") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment