Created
May 15, 2017 18:31
-
-
Save CodaFi/661585c1ae2b5bc99e1168912d62d5a5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module MonadsAsModules where | |
import Agda.Primitive using (Level) | |
id : ∀ {k}{X : Set k} → X → X | |
id x = x | |
const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A | |
const x _ = x | |
_∘_ : ∀ {i j k} | |
{A : Set i}{B : A → Set j}{C : (a : A) → B a → Set k} → | |
(f : {a : A}(b : B a) → C a b) → | |
(g : (a : A) → B a) → | |
(a : A) → C a (g a) | |
f ∘ g = λ a → f (g a) | |
flip : ∀ {a b c} {A : Set a} {B : Set b} {C : A → B → Set c} → | |
((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y) | |
flip f = λ y x → f x y | |
infixr 9 _∘_ | |
record EndoFunctor (F : Set → Set) : Set₁ where | |
constructor MkEndo | |
field | |
map : ∀ { S T } → (S → T) → F S → F T | |
open EndoFunctor {{...}} public | |
record Applicative (F : Set → Set) : Set₁ where | |
infixl 4 _⍟_ | |
field | |
pure : ∀ { X } → X → F X | |
_⍟_ : ∀ { S T } → F (S → T) → F S → F T | |
applicativeEndoFunctor : EndoFunctor F | |
applicativeEndoFunctor = record { map = _⍟_ ∘ pure } | |
open Applicative {{...}} public | |
record Monad (F : Set → Set) : Set₁ where | |
field | |
return : ∀ { X } → X → F X | |
_>>=_ : ∀ { S T } → F S → (S → F T) → F T | |
monadApplicative : Applicative F | |
monadApplicative = record | |
{ pure = return | |
; _⍟_ = λ ff fs → ff >>= λ f → fs >>= λ s → return (f s) | |
} | |
monadEndoFunctor : EndoFunctor F | |
monadEndoFunctor = Applicative.applicativeEndoFunctor monadApplicative | |
μᴹ : ∀ {X} → F (F X) → F X | |
μᴹ = flip _>>=_ id | |
open Monad {{...}} public | |
record RightModule (S : Set → Set) {{SEF : EndoFunctor S}} (M : Set → Set) {{RMM : Monad M}} : Set₁ where | |
field | |
μ→ : ∀ {X} → S (M X) → S X | |
open RightModule {{...}} public | |
record LeftModule (L : Set → Set) {{SEF : EndoFunctor L}} (M : Set → Set) {{RMM : Monad M}} : Set₁ where | |
field | |
←μ : ∀ {X} → M (L X) → L X | |
open LeftModule {{...}} public | |
instance | |
monadRightModule : ∀ {M : Set → Set}{{MM : Monad M}} → RightModule M {{monadEndoFunctor}} M | |
monadRightModule {M}{{MM}} = record { μ→ = μᴹ } | |
monadLeftModule : ∀ {M : Set → Set}{{MM : Monad M}} → LeftModule M {{monadEndoFunctor}} M | |
monadLeftModule {M}{{MM}} = record { ←μ = μᴹ } | |
monadMorphismRightModule : ∀ {M T : Set → Set}{{MM : Monad M}}{{MT : Monad T}} → (∀ {X} → M X → T X) → RightModule T {{monadEndoFunctor}} M | |
monadMorphismRightModule {M}{T}{{MM}}{{MT}} m = record { μ→ = μᴹ ∘ (λ a → m (Monad.return MM ((MT Monad.>>= a) m))) } | |
monadMorphismLeftModule : ∀ {M T : Set → Set}{{MM : Monad M}}{{MT : Monad T}} → (∀ {X} → M X → T X) → LeftModule T {{monadEndoFunctor}} M | |
monadMorphismLeftModule {M}{T}{{MM}}{{MT}} m = record { ←μ = μᴹ ∘ m } | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment