Skip to content

Instantly share code, notes, and snippets.

@CodaFi
Last active July 28, 2024 10:04
Show Gist options
  • Save CodaFi/ca35a0c22fbd96eca505b5df45f2509e to your computer and use it in GitHub Desktop.
Save CodaFi/ca35a0c22fbd96eca505b5df45f2509e to your computer and use it in GitHub Desktop.
A Swift Playground containing Martin Grabmüller's "Algorithm W Step-by-Step"
/// Playground - noun: a place where people can play
/// I am the very model of a modern Judgement General
//: # Algorithm W
//: In this playground we develop a complete implementation of the classic
//: algorithm W for Hindley-Milner polymorphic type inference in Swift.
//: ## Introduction
//: Type inference is a tricky business, and it is even harder to learn
//: the basics, because most publications are about very advanced topics
//: like rank-N polymorphism, predicative/impredicative type systems,
//: universal and existential types and so on. Since I learn best by
//: actually developing the solution to a problem, I decided to write a
//: basic tutorial on type inference, implementing one of the most basic
//: type inference algorithms which has nevertheless practical uses as the
//: basis of the type checkers of languages like ML or Haskell.
//:
//: The type inference algorithm studied here is the classic Algoritm W
//: proposed [by Milner](http://web.cs.wpi.edu/~cs4536/c12/milner-type-poly.pdf).
//: For a very readable presentation of this algorithm and possible variations and extensions
//: [read also Heeren et al.](https://pdfs.semanticscholar.org/8983/233b3dff2c5b94efb31235f62bddc22dc899.pdf).
//: Several aspects of this tutorial are also inspired by [Jones](http://web.cecs.pdx.edu/~mpj/thih/thih.pdf).
//: ## Preliminaries
//: We start by defining the abstract syntax for both *expressions*
//: (of type `Expression`), *types* (`Type`) and *type schemes*
//: (`Scheme`).
indirect enum Expression : CustomStringConvertible {
case evar(String)
case lit(Literal)
case app(Expression, Expression)
case abs(String, Expression)
case elet(String, Expression, Expression)
case fix(String, String, Expression)
var description : String {
switch self {
case let .evar(name):
return name
case let .lit(lit):
return lit.description
case let .elet(x, b, body):
return "let \(x) = \(b) in \(body)"
case let .app(e1, e2):
switch e2 {
case .elet(_, _, _):
return "\(e1)(\(e2))"
case .abs(_, _):
return "\(e1)(\(e2))"
case .app(_, _):
return "\(e1)(\(e2))"
default:
return "\(e1) \(e2)"
}
case let .abs(n, e):
return "λ \(n) -> \(e)"
case let .fix(f, n, e):
return "fix \(f) \(Expression.abs(n, e))"
}
}
}
enum Literal : CustomStringConvertible {
case int(Int)
case bool(Bool)
var description : String {
switch self {
case let .int(i):
return i.description
case let .bool(b):
return b ? "True" : "False"
}
}
}
indirect enum Type : Equatable, CustomStringConvertible {
case typeVar(String)
case int
case bool
case arrow(Type, Type)
static func ==(l : Type, r : Type) -> Bool {
switch (l, r) {
case let (.typeVar(ls), .typeVar(rs)):
return ls == rs
case (.int, .int):
return true
case (.bool, .bool):
return true
case let (.arrow(l1, r1), .arrow(l2, r2)):
return l1 == l2 && r1 == r2
default:
return false
}
}
var description : String {
switch self {
case let .typeVar(n):
return n
case .int:
return "Int"
case .bool:
return "Bool"
case let .arrow(.arrow(ss, sr), t2):
return "(\(ss) -> \(sr)) -> \(t2)"
case let .arrow(t1, t2):
return "\(t1) -> \(t2)"
}
}
}
struct Scheme : CustomStringConvertible {
let vars : [String]
let type : Type
var description : String {
return "∀ \(self.vars.joined(separator: ", ")) . \(self.type)"
}
}
//: We will need to determine the free type variables of a type. The `freeTypeVariables` accessor
//: implements this operation, which appears as a requirement of the `TypeCarrier` protocol because
//: it will also be needed for type environments (to be defined below). Another useful operation on
//: types, type schemes and the like is that of applying a substitution.
protocol TypeCarrier {
var freeTypeVariables : Set<String> { get }
func apply(_ : Substitution) -> Self
}
extension Type : TypeCarrier {
var freeTypeVariables : Set<String> {
switch self {
case let .typeVar(n):
return Set([ n ])
case .int:
return Set()
case .bool:
return Set()
case let .arrow(t1, t2):
return t1.freeTypeVariables.union(t2.freeTypeVariables)
}
}
func apply(_ s : Substitution) -> Type {
// To apply a substitution to a type:
switch self {
case let .typeVar(n):
// If it's a type variable, look it up in the substitution map to
// find a replacement.
if let t = s[n] {
// If we get replaced with ourself we've reached the desired fixpoint.
if t == self {
return t
}
// Otherwise keep substituting.
return t.apply(s)
}
return self
case .int:
// Literals can't be substituted for.
return self
case .bool:
// Literals can't be substituted for.
return self
case let .arrow(t1, t2):
// Substitute down the input and output types of an arrow.
return .arrow(t1.apply(s), t2.apply(s))
}
}
}
extension Scheme : TypeCarrier {
var freeTypeVariables : Set<String> {
return self.type.freeTypeVariables.subtracting(Set(self.vars))
}
func apply(_ s : Substitution) -> Scheme {
// To apply a substitution to a type scheme, knock out all the things that are no longer
// type variables.
return Scheme(vars: self.vars, type: self.type.apply(self.vars.reduce(into: s) { (map, k) in
map.removeValue(forKey: k)
}))
}
}
//: Now we define substitutions, which are finite mappings from type
//: variables to types.
typealias Substitution = Dictionary<String, Type>
//: Type environments, called Γ in the text, are mappings from term
//: variables to their respective type schemes.
struct Γ {
let unEnv : Dictionary<String, Scheme>
//: We define several functions on type environments. The operation
//: `Γ \ x` removes the binding for `x` from `Γ`. Naturally, we call it
//: `remove`.
func remove(_ v : String) -> Γ {
var dict = self.unEnv
dict.removeValue(forKey: v)
return Γ(unEnv: dict)
}
//: The `generalize` function abstracts a type over all type variables
//: which are free in the type but not free in the given type environment.
// Γ ⊢ e : σ α ∉ free(Γ)
// −−−−−−−−−−−−−−−−−------−
// Γ ⊢ e : ∀ α . σ
func generalize(_ t : Type) -> Scheme {
return Scheme(vars: t.freeTypeVariables.subtracting(self.freeTypeVariables).map { $0 }, type: t)
}
}
extension Γ : TypeCarrier {
var freeTypeVariables : Set<String> {
return self.unEnv.reduce(Set<String>(), { (acc, t) -> Set<String> in
return acc.union(t.value.freeTypeVariables)
})
}
func apply(_ s : Substitution) -> Γ {
return Γ(unEnv: Dictionary(self.unEnv.map { (k, v) in (k, v.apply(s)) }, uniquingKeysWith: {$1}))
}
}
enum TypeError : Error {
case unificationFailed(Type, Type)
case occursCheckFailed(String, Type)
case foundUnbound(String)
var description : String {
switch self {
case let .unificationFailed(t1, t2):
return "types do not unify: \(t1) vs. \(t2)"
case let .occursCheckFailed(u, t):
return "'occurs' check failed: \(u) appears in its own type: \(t)"
case let .foundUnbound(n):
return "unbound variable \(n)"
}
}
}
//: Several operations, for example type scheme instantiation, require
//: fresh names for newly introduced type variables. This is implemented
//: by using an appropriate monad which takes care of generating fresh
//: names. It is also capable of passing a dynamically scoped
//: environment, error handling and performing I/O, but we will not go
//: into details here.
final class Inferencer {
var supply : Int = 0
//: The instantiation function replaces all bound type variables in a type
//: scheme with fresh type variables.
//:
//: In more creative type systems, this rule acts as a trapdoor that lets
//: you insert whatever you want "subtype" to mean - note this is not necessarily the
//: subtype in the object-oriented sense, but rather in a type-scheme sense.
//: For example, the type `int -> int` is subtype of `∀ a . a -> a` because we
//: only intend "subtype" to mean "is more/less specialized than".
// Γ ⊢ e : σ′ σ′ ⊑ σ
// −−−−−−−−−−−−−−-------
// Γ ⊢ e : σ
func instantiate(_ s : Scheme) throws -> Type {
let nvars = s.vars.map { _ in self.createTypeVariable(named: "τ") }
let subst = Substitution(zip(s.vars, nvars), uniquingKeysWith: {$1})
return s.type.apply(subst)
}
//: This is the unification function for types.
func unify(_ t1 : Type, with t2 : Type) throws -> Substitution {
switch (t1, t2) {
case let (.arrow(l, r), .arrow(l2, r2)):
let subst1 = try self.unify(l, with: l2)
let subst2 = try self.unify(r.apply(subst1), with: r2.apply(subst1))
return subst1.merging(subst2, uniquingKeysWith: {$1})
case let (.typeVar(tv), ty):
return try self.bindTypeVariable(tv, to: ty)
case let (ty, .typeVar(tv)):
return try self.bindTypeVariable(tv, to: ty)
case (.int, .int):
return [:]
case (.bool, .bool):
return [:]
default:
throw TypeError.unificationFailed(t1, t2)
}
}
//: The function `bindTypeVariable` attempts to bind a type variable to a type
//: and return that binding as a subsitution, but avoids binding a
//: variable to itself and performs the occurs check.
private func bindTypeVariable(_ u : String, to t : Type) throws -> Substitution {
if t == .typeVar(u) {
return [:]
} else if t.freeTypeVariables.contains(u) {
throw TypeError.occursCheckFailed(u, t)
} else {
return [u:t]
}
}
//: ## Main type inference function
//: The function `inferType` infers the types for expressions. The type
//: environment must contain bindings for all free variables of the
//: expressions. The returned substitution records the type constraints
//: imposed on type variables by the expression, and the returned type is
//: the type of the expression.
//: Algorithm W takes a "top-down" (context-free) approach to type inference at the
//: expense of failing later and generating more constraints than Algorithm M. As
//: presented here, Algorithm W will only fail at the boundary of an application expression
//: where function and argument fail to unify. By the time that occurs, type checking of
//: both will have been performed, and the resulting error will apply to the entirety of the
//: application rather than an erroneous subexpression.
//:
//: Algorithm W was proven sound and complete [by Milner](http://web.cs.wpi.edu/~cs4536/c12/milner-type-poly.pdf)
//: in his original presentation of the type system for which this algorithm was built.
private func inferTypeW(of exp : Expression, in env : Γ) throws -> (Substitution, Type) {
switch exp {
// x : σ ∈ Γ
// --−−−−−−−
// Γ ⊢ x : σ
case let .evar(n):
// The only thing we can do is lookup in the context to check if
// it contains an entry for the variable we're interested in. If it
// doesn't then the variable must be unbound.
guard let sigma = env.unEnv[n] else {
throw TypeError.foundUnbound(n)
}
let t = try self.instantiate(sigma)
return ([:], t)
// We require no premises to infer types for boolean and integer literals.
case let .lit(l):
switch l {
//
// --−−−−−−−------
// Γ ⊢ true : bool
//
// --−−−−−−−-------
// Γ ⊢ false : bool
case .bool(_):
return ([:], Type.bool)
//
// --−−−−−−−-------
// Γ ⊢ [0-9]+ : int
case .int(_):
return ([:], Type.int)
}
// Γ , x : τ ⊢ e : τ′
// −−−−−−−−−−−−−−------
// Γ ⊢ λ x . e : τ → τ′
case let .abs(n, body):
// Create a new type variable to solve for the abstraction.
let tv = self.createTypeVariable(named: "τ")
// Setup a new environment that binds the type of the bound variable to our new type variable.
var updatedEnv = env.unEnv
updatedEnv[n] = Scheme(vars: [], type: tv)
// Infer the type of the body.
let (bodySubst, bodyTy) = try self.inferTypeW(of: body, in: Γ(unEnv: updatedEnv))
return (bodySubst, .arrow(tv.apply(bodySubst), bodyTy))
// Γ ⊢ e0 : τ → τ′ Γ ⊢ e1 : τ
// −--------−−−−−−−−−−−−−−−−−−−−
// Γ ⊢ e0(e1) : τ′
case let .app(e0, e1):
// Create a new type variable to solve for the application.
let tv = self.createTypeVariable(named: "τ")
// Infer the type of the function...
let (funcSubst, funcTy) = try self.inferTypeW(of: e0, in: env)
// Then infer the type of the argument.
let (argSubst, argTy) = try self.inferTypeW(of: e1, in: env.apply(funcSubst))
// Now, apply function type to argument type to get back whatever substitutions
// we need to perform to yield the correct output type.
let subst = try self.unify(funcTy.apply(argSubst), with: .arrow(argTy, tv))
// Yield the output with those substitutions. Dump all the work we've done
// up to this point in the context for good measure, too.
return (subst.merging(argSubst, uniquingKeysWith: {$1}).merging(funcSubst, uniquingKeysWith: {$1}), tv.apply(subst))
// Γ ⊢ e0 : σ Γ , x : σ ⊢ e1 : τ
// −------------−−−−−−−−−−−−−−−−−−−−
// Γ ⊢ let x = e0 in e1 : τ
case let .elet(x, e0, e1):
// First, infer the type of the body of the binding.
let (boundSubst, boundTy) = try self.inferTypeW(of: e0, in: env)
// Update the context with that information.
var updatedEnv = env.unEnv
updatedEnv[x] = env.apply(boundSubst).generalize(boundTy)
// Now infer the type of the body
let (bodySubst, bodyTy) = try self.inferTypeW(of: e1, in: Γ(unEnv: updatedEnv).apply(boundSubst))
return (boundSubst.merging(bodySubst, uniquingKeysWith: {$1}), bodyTy)
// This rule (recursion) is not a part of the original system. Nonetheless its typing rules
// are easy enough we may as well support it.
//
// Γ, f : τ ⊢ λ x . e : τ
// ----------------------
// Γ ⊢ fix f λx . e : τ
case let .fix(f, n, body):
// Create a new type variable to solve for the fixpoint.
let tv = self.createTypeVariable(named: "τ")
// Setup a new environment that binds the type of the recursor.
var updatedEnv = env.unEnv
updatedEnv[f] = Scheme(vars: [], type: tv)
// Infer the type of the lambda.
let (lamSubst, lamTy) = try self.inferTypeW(of: .abs(n, body), in: Γ(unEnv: updatedEnv))
let subst = try self.unify(tv.apply(lamSubst), with: lamTy)
return (subst.merging(lamSubst, uniquingKeysWith: {$1}), lamTy.apply(subst))
}
}
//: Algorithm M carries a type constraint from the context of an expression and stops when the
//: expression cannot satisfy the current type constraint.
//:
//: Algorithm M was proven [by Lee and Yi](https://ropas.snu.ac.kr/~kwang/paper/98-toplas-leyi.pdf) to be
//: sound and complete. It also has the desirable property that it generates less constraints overall than
//: Algorithm W and has better locality of type errors at the expense needing to carry a context through the
//: computation.
private func inferTypeM(of exp : Expression, in env : Γ, against rho : Type) throws -> Substitution {
switch exp {
// x : σ ∈ Γ
// --−−−−−−−
// Γ ⊢ x : σ
case let .evar(n):
// The only thing we can do is lookup in the context to check if
// it contains an entry for the variable we're interested in. If it
// doesn't then the variable must be unbound.
guard let sigma = env.unEnv[n] else {
throw TypeError.foundUnbound(n)
}
let t = try self.instantiate(sigma)
return try self.unify(rho, with: t)
// We require no premises to infer types for boolean and integer literals.
case let .lit(l):
switch l {
//
// --−−−−−−−------
// Γ ⊢ true : bool
//
// --−−−−−−−-------
// Γ ⊢ false : bool
case .bool(_):
return try self.unify(rho, with: .bool)
//
// --−−−−−−−
// Γ ⊢ [0-9]+ : int
case .int(_):
return try self.unify(rho, with: .int)
}
// Γ , x : τ ⊢ e : τ′
// −−−−−−−−−−−−−−------
// Γ ⊢ λ x . e : τ → τ′
case let .abs(n, body):
// Create a new type variable to solve for the abstraction.
let inputTV = self.createTypeVariable(named: "τ")
let outputTV = self.createTypeVariable(named: "τ")
// Check that the type variable we have is an arrow.
let arrowSubst = try self.unify(rho, with: .arrow(inputTV, outputTV))
// Setup a new environment that binds the type of the bound variable to our new type variable.
var updatedEnv = env.unEnv
updatedEnv[n] = Scheme(vars: [], type: inputTV.apply(arrowSubst))
// Infer the type of the body in the updated context.
let bodySubst = try self.inferTypeM(of: body, in: Γ(unEnv: updatedEnv).apply(arrowSubst), against: outputTV.apply(arrowSubst))
return bodySubst.merging(arrowSubst, uniquingKeysWith: {$1})
// Γ ⊢ e0 : τ → τ′ Γ ⊢ e1 : τ
// −--------−−−−−−−−−−−−−−−−−−−−
// Γ ⊢ e0(e1) : τ′
case let .app(e0, e1):
// Create a new type variable to solve for the application.
let tv = self.createTypeVariable(named: "τ")
//
let funcSubst = try self.inferTypeM(of: e0, in: env, against: .arrow(tv, rho))
let argSubst = try self.inferTypeM(of: e1, in: env.apply(funcSubst), against: tv.apply(funcSubst))
return argSubst.merging(funcSubst, uniquingKeysWith: {$1})
// Γ ⊢ e0 : σ Γ , x : σ ⊢ e1 : τ
// −------------−−−−−−−−−−−−−−−−−−−−
// Γ ⊢ let x = e0 in e1 : τ
case let .elet(x, e0, e1):
let tv = self.createTypeVariable(named: "τ")
let boundSubst = try self.inferTypeM(of: e0, in: env, against: tv)
// Insert the bound variable into the context.
var updatedEnv = env.unEnv
updatedEnv[x] = env.generalize(tv.apply(boundSubst))
// Infer the type of the body.
let bodySubst = try self.inferTypeM(of: e1, in: Γ(unEnv: updatedEnv).apply(boundSubst), against: rho.apply(boundSubst))
return bodySubst.merging(boundSubst, uniquingKeysWith: {$1})
// Γ, f : τ ⊢ λ x . e : τ
// ----------------------
// Γ ⊢ fix f λ x . e : τ
case let .fix(f, n, body):
// Add the recursor to the environment.
var updatedEnv = env.unEnv
updatedEnv[f] = Scheme(vars: [], type: rho)
// Infer the type of the rest as a lambda term.
return try self.inferTypeM(of: Expression.abs(n, body), in: Γ(unEnv: updatedEnv), against: rho)
}
}
typealias Assumptions = [(String, Type)]
typealias ConstraintGraph = [Constraint]
enum Constraint : CustomStringConvertible {
case equivalent(Type, Type)
case explicitInstance(Type, Scheme)
case implicitInstance(Type, Set<String>, Type)
var description : String {
switch self {
case let .equivalent(t1, t2):
return "\(t1) = \(t2)"
case let .explicitInstance(t, s):
return "\(t) <~ \(s)"
case let .implicitInstance(t1, m, t2):
return "\(t1) <= (\(m.joined(separator: ","))) \(t2)"
}
}
}
//: A cute function that translates the work HM-inference is doing behind the scenes to an explicit
//: constraint-based format.
func gatherConstraints(for exp : Expression, _ m : Set<String>) -> (Assumptions, ConstraintGraph, Type) {
switch exp {
case let .evar(n):
// If we find a variable, spawn a constraint for it and add it to the list
// of assumptions needed to solve this system.
let tv = self.createTypeVariable(named: "τ")
return ([(n, tv)], [], tv)
case .lit(.int(_)):
// Literals spawn type variables that are solved immediately by generated constraints.
let tv = self.createTypeVariable(named: "τ")
return ([], [.equivalent(tv, .int)], tv)
case .lit(.bool(_)):
// Literals spawn type variables that are solved immediately by generated constraints.
let tv = self.createTypeVariable(named: "τ")
return ([], [.equivalent(tv, .bool)], tv)
case let .app(e0, e1):
// For an application, gather the constraints necessary to check the function.
let (funcAssump, funcConstr, funcTy) = self.gatherConstraints(for: e0, m)
// The gather the constraints needed for the argument.
let (argAssump, argConstr, argTy) = self.gatherConstraints(for: e1, m)
// Now spawn a type variable for the application itself and take the union of all
// generated constraints and assumptions plus a constraint on the output type.
let b = self.createTypeVariable(named: "τ")
return (funcAssump + argAssump, funcConstr + argConstr + [.equivalent(funcTy, .arrow(argTy, b))], b)
case let .abs(x, body):
// Spawn a type variable for the abstraction.
guard case let .typeVar(vn) = self.createTypeVariable(named: "τ") else {
fatalError("Wat?")
}
// Gather the constraints for the body of the lambda.
let (bodyAssump, bodyConstr, bodyTy) = self.gatherConstraints(for: body, m.union([vn]))
let b = Type.typeVar(vn)
// Replace all the assumptions about the bound variable with fresh ones that are in scope.
return (bodyAssump.filter { (n, _) in x != n }, bodyConstr + bodyAssump.filter({ (x2, _) in x == x2 }).map { (x2, t2) in .equivalent(t2, b) }, .arrow(b, bodyTy))
case let .elet(x, e0, e1):
// Gather the constraints for the binding.
let (bindAssump, bindConstr, bindTy) = self.gatherConstraints(for: e0, m)
// The gather them for the body.
let (bodyAssump, bodyConstr, bodyTy) = self.gatherConstraints(for: e1, m.subtracting([x]))
return (
// Update any assumptions that mention the newly bound variable.
bindAssump + bodyAssump.filter { (n, _) in x != n },
bindConstr + bodyConstr + bodyAssump.filter({ (v, _) in x == v }).map { (x2, t2) in .implicitInstance(t2, m, bindTy) },
bodyTy
)
case let .fix(f, n, body):
// Create a new type variable to solve for the fixpoint.
guard case let .typeVar(vn) = self.createTypeVariable(named: "τ") else {
fatalError("Wat?")
}
// Gather the constraints for the body of the fixpoint.
let (bodyAssump, bodyConstr, bodyTy) = self.gatherConstraints(for: .abs(n, body), m.union([vn]))
let b = Type.typeVar(vn)
return (
bodyAssump.filter { (n, _) in f != n },
bodyConstr + bodyAssump.filter({ (x2, _) in f == x2 }).map { (x2, t2) in .equivalent(t2, b) },
bodyTy
)
}
}
private func createTypeVariable(named prefix : String) -> Type {
self.supply += 1
return .typeVar(prefix + self.supply.description)
}
enum Direction {
case topDown
case bottomUp
}
//: This is the main entry point to the type inferencer. It simply calls
//: `inferType` and applies the returned substitution to the returned type.
func inferType(of e : Expression, direction : Direction = .topDown) throws -> Type {
switch direction {
case .topDown:
let (subst, type) = try self.inferTypeW(of: e, in: Γ(unEnv: [:]))
return type.apply(subst)
case .bottomUp:
let tv = self.createTypeVariable(named: "τ")
let subst = try self.inferTypeM(of: e, in: Γ(unEnv: [:]), against: tv)
return tv.apply(subst)
}
}
}
//: ## Tests
//: The following simple expressions (partly taken from [Heeren](https://pdfs.semanticscholar.org/8983/233b3dff2c5b94efb31235f62bddc22dc899.pdf))
//: are provided for testing the type inference function.
let e0 : Expression = .elet("id", .abs("x", .evar("x")), .evar("id"))
let e1 : Expression = .elet("id", .abs("x", .evar("x")), .app(.evar("id"), .evar("id")))
let e2 : Expression = .elet("id", .abs("x", .elet("y", .evar("x"), .evar("y"))), .app(.evar("id"), .evar("id")))
let e3 : Expression = .elet("id", .abs("x", .elet("y", .evar("x"), .evar("y"))), .app(.app(.evar("id"), .evar("id")), .lit(.int(2))))
let e4 : Expression = .elet("id", .abs("x", .app(.evar("x"), .evar("x"))), .evar("id"))
let e5 : Expression = .abs("m", .elet("y", .evar("m"), .elet("x", .app(.evar("y"), .lit(.bool(true))), .evar("y"))))
let e6 : Expression = .fix("id", "x", .app(.evar("id"), .evar("x")))
//: This simple set of tests tries to infer the type for the given
//: expression. If successful, it prints the expression together with its
//: type, otherwise, it prints the error message.
for exp in [e0, e1, e2, e3, e4, e5, e6] {
do {
print(exp)
print("Algorithm W: ",try Inferencer().inferType(of: exp, direction: .topDown))
print(Inferencer().gatherConstraints(for: exp, Set()).1)
print("Algorithm M: ",try Inferencer().inferType(of: exp, direction: .bottomUp))
print("---------")
} catch let e as TypeError {
print(e.description)
print("---------")
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment