Last active
April 18, 2024 11:42
-
-
Save CoderCowMoo/735e84e35ca3b68a1125f738bf72f096 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import transformers | |
import gradio as gr | |
import PIL | |
from threading import Thread | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
import warnings | |
# disable some warnings | |
transformers.logging.set_verbosity_error() | |
transformers.logging.disable_progress_bar() | |
warnings.filterwarnings('ignore') | |
# set device | |
torch.set_default_device('cuda') # or 'cpu' | |
torch.set_default_tensor_type('torch.cuda.FloatTensor') | |
# create model | |
model = AutoModelForCausalLM.from_pretrained( | |
'qnguyen3/nanoLLaVA', | |
torch_dtype=torch.float16, | |
device_map='auto', | |
trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained( | |
'qnguyen3/nanoLLaVA', | |
trust_remote_code=True) | |
def answer_question(img: PIL.Image.Image, prompt: str): | |
# nanoLLaVA prompt tokenization stuff | |
messages = [ | |
{"role": "user", "content": f'<image>\n{prompt}'} | |
] | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True) | |
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] | |
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0) | |
image_tensor = model.process_images([img], model.config).to(dtype=model.dtype) | |
# generate | |
thread = Thread( | |
target=model.generate, | |
kwargs = { | |
"input_ids": input_ids, | |
"images": image_tensor, | |
"max_new_tokens": 2048, | |
"use_cache": True, | |
"streamer": streamer | |
}, | |
) | |
thread.start() | |
buf = "" | |
for new_text in streamer: | |
#buf += tokenizer.decode(new_text[input_ids.shape[1]:], skip_special_tokens=True).strip() | |
buf += new_text | |
yield buf | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# NanoLLaVA | |
### A tiny vision language model. [HuggingFace 🤗](https://huggingface.co/qnguyen3/nanoLLaVA) | |
""" | |
) | |
with gr.Row(): | |
prompt = gr.Textbox(label="Input Prompt", placeholder="Type here...", scale=4) | |
submit = gr.Button("Submit") | |
with gr.Row(): | |
img = gr.Image(type="pil", label="Upload an Image") | |
output = gr.TextArea(label="Response") | |
submit.click(answer_question, [img, prompt], output) | |
prompt.submit(answer_question, [img, prompt], output) | |
demo.queue().launch(debug=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment