Created
June 25, 2018 06:35
-
-
Save Coderx7/3090242a013464c5af8931a14250319e to your computer and use it in GitHub Desktop.
imagenet train pytorch script
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://github.com/pytorch/vision/blob/master/torchvision/models/__init__.py | |
import argparse | |
import os | |
import shutil | |
import time | |
import os, sys, pdb, shutil, time, random, datetime | |
import torch | |
import torch.nn as nn | |
import torch.nn.parallel | |
import torch.backends.cudnn as cudnn | |
import torch.optim | |
import torch.utils.data | |
import torchvision.transforms as transforms | |
import torchvision.datasets as datasets | |
from utils import convert_secs2time, time_string, time_file_str,AverageMeter | |
import torch.optim.lr_scheduler as lr_scheduler | |
# from models import print_log | |
import models | |
from tensorboardX import SummaryWriter | |
from utils import convert_model, measure_model | |
model_names = sorted(name for name in models.__dict__ | |
if name.islower() and not name.startswith("__") | |
and callable(models.__dict__[name])) | |
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') | |
parser.add_argument('data', metavar='DIR', help='path to directory containing training and validation folders') | |
parser.add_argument('--train_dir_name', metavar='DIR', help='training set directory name') | |
parser.add_argument('--val_dir_name', metavar='DIR', help='validation set directory name') | |
parser.add_argument('--save_dir', type=str, default='./', help='Folder to save checkpoints and log.') | |
parser.add_argument('--arch', '-a', metavar='ARCH', default='simpnet_imgnet_5m_nodrp_safc_s1', | |
choices=model_names, | |
help='model architecture: ' + | |
' | '.join(model_names) + | |
' (default: simpnet_imgnet_5m_nodrp_safc_s1)') | |
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N', help='number of data loading workers (default: 16)') | |
parser.add_argument('--epochs', default=200, type=int, metavar='N', help='number of total epochs to run') | |
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') | |
parser.add_argument('-b', '--batch-size', default=128, type=int, metavar='N', help='mini-batch size (default: 128)') | |
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate') | |
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') | |
parser.add_argument('--weight-decay', '--wd', default=1e-5, type=float, metavar='W', help='weight decay (default: 1e-4)') | |
parser.add_argument('--print-freq', '-p', default=200, type=int, metavar='N', help='print frequency (default: 100)') | |
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') | |
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') | |
args = parser.parse_args() | |
args.prefix = time_file_str() | |
def main(): | |
best_prec1 = 0 | |
best_prec5 = 0 | |
writer = SummaryWriter() | |
if not os.path.isdir(args.save_dir): | |
os.makedirs(args.save_dir) | |
# used for file names, etc | |
time_stamp = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') | |
log = open(os.path.join(args.save_dir, '{}.{}_{}.log'.format(args.arch, args.prefix, time_stamp)), 'w') | |
# create model | |
print_log("=> creating model '{}'".format(args.arch), log) | |
model = models.__dict__[args.arch](1000) | |
print_log("=> Model : {}".format(model), log) | |
print_log("=> parameter : {}".format(args), log) | |
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): | |
model.features = torch.nn.DataParallel(model.features) | |
model.cuda() | |
else: | |
model = torch.nn.DataParallel(model).cuda() | |
# define loss function (criterion) and optimizer | |
criterion = nn.CrossEntropyLoss().cuda() | |
# optimizer = torch.optim.Adadelta(model.parameters(), weight_decay=args.weight_decay, | |
# lr=0.1, rho=0.9) | |
optimizer = torch.optim.SGD(model.parameters(), args.lr, | |
momentum=args.momentum, | |
weight_decay=args.weight_decay, | |
nesterov=True) | |
IMAGE_SIZE=224 | |
print_log(summary(model, input_size=(3, IMAGE_SIZE, IMAGE_SIZE)), log) | |
n_flops, n_params = measure_model(model, IMAGE_SIZE, IMAGE_SIZE) | |
print_log('FLOPs: %.2fM, Params: %.2fM' % (n_flops / 1e6, n_params / 1e6), log) | |
## epoch | |
milestones = [30, 60, 90, 130, 150]#[10, 20, 30, 40, 50, 60]#[15, 30, 60, 90, 110, 140] | |
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1) | |
#scheduler = lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1) | |
# optionally resume from a checkpoint | |
if args.resume: | |
if os.path.isfile(args.resume): | |
print_log("=> loading checkpoint '{}'".format(args.resume), log) | |
checkpoint = torch.load(args.resume) | |
args.start_epoch = checkpoint['epoch'] | |
best_prec1 = checkpoint['best_prec1'] | |
if 'best_prec5' in checkpoint: | |
best_prec5 = checkpoint['best_prec5'] | |
else: | |
best_prec5 = 0.00 | |
model.load_state_dict(checkpoint['state_dict']) | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
model.eval() | |
print_log("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']), log) | |
else: | |
print_log("=> no checkpoint found at '{}'".format(args.resume), log) | |
cudnn.benchmark = True | |
# Data loading code | |
traindir = os.path.join(args.data, args.train_dir_name) #'train') | |
valdir = os.path.join(args.data, args.val_dir_name) #'val') | |
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
# meanstd = { | |
# mean = { 0.485, 0.456, 0.406 }, | |
# std = { 0.229, 0.224, 0.225 }, | |
# } | |
pca = { | |
'eigval': torch.Tensor([0.2175, 0.0188, 0.0045]), | |
'eigvec': torch.Tensor([ | |
[-0.5675, 0.7192, 0.4009], | |
[-0.5808, -0.0045, -0.8140], | |
[-0.5836, -0.6948, 0.4203], | |
]) | |
} | |
train_dataset = datasets.ImageFolder( | |
traindir, | |
transforms.Compose([ | |
transforms.RandomSizedCrop(224),#224 | |
# transforms.ColorJitter( | |
# brightness = 0.4, | |
# contrast = 0.4, | |
# saturation = 0.4, | |
# ), | |
#transforms.Lighting(0.1, pca['eigval'], pca['eigvec']), | |
#transforms.ColorNormalize(meanstd), | |
transforms.RandomHorizontalFlip(), | |
transforms.ToTensor(), | |
normalize, | |
])) | |
train_loader = torch.utils.data.DataLoader( | |
train_dataset, batch_size=args.batch_size, shuffle=True, | |
num_workers=args.workers, pin_memory=True, sampler=None) | |
val_loader = torch.utils.data.DataLoader( | |
datasets.ImageFolder(valdir, transforms.Compose([ | |
transforms.Scale(256), | |
#t.ColorNormalize(meanstd), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
normalize, | |
])), | |
batch_size=args.batch_size, shuffle=False, | |
num_workers=args.workers, pin_memory=True) | |
if args.evaluate: | |
validate(val_loader, model, criterion) | |
return | |
filename = os.path.join(args.save_dir, 'checkpoint.{0}.{1}_{2}.pth.tar'.format(args.arch, args.prefix, time_stamp)) | |
bestname = os.path.join(args.save_dir, 'best.{0}.{1}_{2}.pth.tar'.format(args.arch, args.prefix, time_stamp)) | |
start_time = time.time() | |
epoch_time = AverageMeter() | |
for epoch in range(args.start_epoch, args.epochs): | |
current_learning_rate = float(scheduler.get_lr()[-1]) | |
scheduler.step() | |
#adjust_learning_rate(optimizer, epoch) | |
need_hour, need_mins, need_secs = convert_secs2time(epoch_time.val * (args.epochs-epoch)) | |
need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs) | |
#print_log(' [{:s}] :: {:3d}/{:3d} ----- [{:s}] {:s}'.format(args.arch, epoch, args.epochs, time_string(), need_time), log) | |
print_log('\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} [learning_rate={:.6f}]'.format(time_string(), epoch, args.epochs, need_time, current_learning_rate) \ | |
+ ' [Best : Accuracy(T1/T5)={:.2f}/{:.2f}, Error={:.2f}/{:.2f}]'.format(best_prec1, best_prec5, 100-best_prec1,100-best_prec5), log) | |
# train for one epoch | |
tr_prec1, tr_prec5, tr_loss = train(train_loader, model, criterion, optimizer, epoch, log) | |
# evaluate on validation set | |
prec1,prec5, val_loss = validate(val_loader, model, criterion, log) | |
# remember best prec@1 and save checkpoint | |
is_best = prec1 > best_prec1 | |
best_prec1 = max(prec1, best_prec1) | |
best_prec5 = max(prec5, best_prec5) | |
writer.add_scalar('Learning rate ', current_learning_rate, epoch) | |
writer.add_scalar('training/loss', tr_loss, epoch) | |
writer.add_scalar('training/Top1', tr_prec1, epoch) | |
writer.add_scalar('training/Top5', tr_prec5, epoch) | |
writer.add_scalar('validation/loss', val_loss, epoch) | |
writer.add_scalar('validation/Top1', prec1, epoch) | |
writer.add_scalar('validation/Top5', prec5, epoch) | |
save_checkpoint({ | |
'epoch': epoch + 1, | |
'arch': args.arch, | |
'state_dict': model.state_dict(), | |
'best_prec1': best_prec1, | |
'best_prec5': best_prec5, | |
'optimizer' : optimizer.state_dict(), | |
}, is_best, filename, bestname) | |
# measure elapsed time | |
epoch_time.update(time.time() - start_time) | |
start_time = time.time() | |
writer.close() | |
log.close() | |
# -- Lighting noise (AlexNet-style PCA-based noise) | |
# function M.Lighting(alphastd, eigval, eigvec) | |
# return function(input) | |
# if alphastd == 0 then | |
# return input | |
# end | |
# local alpha = torch.Tensor(3):normal(0, alphastd) | |
# local rgb = eigvec:clone() | |
# :cmul(alpha:view(1, 3):expand(3, 3)) | |
# :cmul(eigval:view(1, 3):expand(3, 3)) | |
# :sum(2) | |
# :squeeze() | |
# input = input:clone() | |
# for i=1,3 do | |
# input[i]:add(rgb[i]) | |
# end | |
# return input | |
# end | |
# end | |
# class Lighting(object): | |
# """Lighting noise(AlexNet - style PCA - based noise)""" | |
# def __init__(self, alphastd, eigval, eigvec): | |
# self.alphastd = alphastd | |
# self.eigval = eigval | |
# self.eigvec = eigvec | |
# def __call__(self, img): | |
# if self.alphastd == 0: | |
# return img | |
# alpha = img.new().resize_(3).normal_(0, self.alphastd) | |
# rgb = self.eigvec.type_as(img).clone()\ | |
# .mul(alpha.view(1, 3).expand(3, 3))\ | |
# .mul(self.eigval.view(1, 3).expand(3, 3))\ | |
# .sum(1).squeeze() | |
# return img.add(rgb.view(3, 1, 1).expand_as(img)) | |
def train(train_loader, model, criterion, optimizer, epoch, log): | |
batch_time = AverageMeter() | |
data_time = AverageMeter() | |
losses = AverageMeter() | |
top1 = AverageMeter() | |
top5 = AverageMeter() | |
# switch to train mode | |
model.train() | |
end = time.time() | |
for i, (input, target) in enumerate(train_loader): | |
# measure data loading time | |
data_time.update(time.time() - end) | |
target = target.cuda(async=True) | |
input_var = torch.autograd.Variable(input) | |
target_var = torch.autograd.Variable(target) | |
# print('i: ',i) | |
# compute output | |
output = model(input_var) | |
# print('output: ',output.shape) | |
# print('output(target_var): ',target_var.shape) | |
# print('target_var: ', target_var) | |
loss = criterion(output, target_var) | |
# print('loss: ',loss.shape) | |
# measure accuracy and record loss | |
prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) | |
# print('input.size(): ', input.size(0)) | |
# print('loss.data[0]: ', loss.data[0]) | |
losses.update(loss.data[0], input.size(0)) | |
top1.update(prec1[0], input.size(0)) | |
top5.update(prec5[0], input.size(0)) | |
# compute gradient and do SGD step | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
# measure elapsed time | |
batch_time.update(time.time() - end) | |
end = time.time() | |
if i % args.print_freq == 0: | |
print_log('Epoch: [{0}][{1}/{2}]\t' | |
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' | |
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' | |
'Loss {loss.val:.4f} ({loss.avg:.4f})\t' | |
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' | |
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( | |
epoch, i, len(train_loader), batch_time=batch_time, | |
data_time=data_time, loss=losses, top1=top1, top5=top5), log) | |
return top1.avg, top5.avg, losses.avg | |
def validate(val_loader, model, criterion, log): | |
batch_time = AverageMeter() | |
losses = AverageMeter() | |
top1 = AverageMeter() | |
top5 = AverageMeter() | |
# switch to evaluate mode | |
model.eval() | |
end = time.time() | |
for i, (input, target) in enumerate(val_loader): | |
target = target.cuda(async=True) | |
input_var = torch.autograd.Variable(input, volatile=True) | |
target_var = torch.autograd.Variable(target, volatile=True) | |
# compute output | |
output = model(input_var) | |
loss = criterion(output, target_var) | |
# measure accuracy and record loss | |
prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) | |
losses.update(loss.data[0], input.size(0)) | |
top1.update(prec1[0], input.size(0)) | |
top5.update(prec5[0], input.size(0)) | |
# measure elapsed time | |
batch_time.update(time.time() - end) | |
end = time.time() | |
if i % args.print_freq == 0: | |
print_log('Test: [{0}/{1}]\t' | |
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' | |
'Loss {loss.val:.4f} ({loss.avg:.4f})\t' | |
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' | |
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( | |
i, len(val_loader), batch_time=batch_time, loss=losses, | |
top1=top1, top5=top5), log) | |
print_log(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Loss@ {error:.3f}'.format(top1=top1, top5=top5, error=losses.avg), log) | |
return top1.avg, top5.avg, losses.avg | |
def save_checkpoint(state, is_best, filename, bestname): | |
torch.save(state, filename) | |
if is_best: | |
shutil.copyfile(filename, bestname) | |
class AverageMeter(object): | |
"""Computes and stores the average and current value""" | |
def __init__(self): | |
self.reset() | |
def reset(self): | |
self.val = 0 | |
self.avg = 0 | |
self.sum = 0 | |
self.count = 0 | |
def update(self, val, n=1): | |
self.val = val | |
self.sum += val * n | |
self.count += n | |
self.avg = self.sum / self.count | |
def adjust_learning_rate(optimizer, epoch): | |
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" | |
lr = args.lr * (0.1 ** (epoch // 30)) | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = lr | |
def print_log(print_string, log): | |
print("{}".format(print_string)) | |
log.write('{}\n'.format(print_string)) | |
log.flush() | |
def accuracy(output, target, topk=(1,)): | |
"""Computes the precision@k for the specified values of k""" | |
maxk = max(topk) | |
batch_size = target.size(0) | |
_, pred = output.topk(maxk, 1, True, True) | |
pred = pred.t() | |
correct = pred.eq(target.view(1, -1).expand_as(pred)) | |
res = [] | |
for k in topk: | |
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) | |
res.append(correct_k.mul_(100.0 / batch_size)) | |
return res | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Variable | |
from collections import OrderedDict | |
def summary(model, input_size): | |
def register_hook(module): | |
def hook(module, input, output): | |
class_name = str(module.__class__).split('.')[-1].split("'")[0] | |
module_idx = len(summary) | |
m_key = '%s-%i' % (class_name, module_idx+1) | |
summary[m_key] = OrderedDict() | |
summary[m_key]['input_shape'] = list(input[0].size()) | |
summary[m_key]['input_shape'][0] = -1 | |
if isinstance(output, (list,tuple)): | |
summary[m_key]['output_shape'] = [[-1] + list(o.size())[1:] for o in output] | |
else: | |
summary[m_key]['output_shape'] = list(output.size()) | |
summary[m_key]['output_shape'][0] = -1 | |
params = 0 | |
if hasattr(module, 'weight') and hasattr(module.weight, 'size'): | |
params += torch.prod(torch.LongTensor(list(module.weight.size()))) | |
summary[m_key]['trainable'] = module.weight.requires_grad | |
if hasattr(module, 'bias') and hasattr(module.bias, 'size'): | |
params += torch.prod(torch.LongTensor(list(module.bias.size()))) | |
summary[m_key]['nb_params'] = params | |
if (not isinstance(module, nn.Sequential) and | |
not isinstance(module, nn.ModuleList) and | |
not (module == model)): | |
hooks.append(module.register_forward_hook(hook)) | |
if torch.cuda.is_available(): | |
dtype = torch.cuda.FloatTensor | |
else: | |
dtype = torch.FloatTensor | |
# check if there are multiple inputs to the network | |
if isinstance(input_size[0], (list, tuple)): | |
x = [Variable(torch.rand(2,*in_size)).type(dtype) for in_size in input_size] | |
else: | |
x = Variable(torch.rand(2,*input_size)).type(dtype) | |
# print(type(x[0])) | |
# create properties | |
summary = OrderedDict() | |
hooks = [] | |
# register hook | |
model.apply(register_hook) | |
# make a forward pass | |
# print(x.shape) | |
model(x) | |
# remove these hooks | |
for h in hooks: | |
h.remove() | |
print('----------------------------------------------------------------') | |
line_new = '{:>20} {:>25} {:>15}'.format('Layer (type)', 'Output Shape', 'Param #') | |
print(line_new) | |
print('================================================================') | |
total_params = 0 | |
trainable_params = 0 | |
for layer in summary: | |
# input_shape, output_shape, trainable, nb_params | |
line_new = '{:>20} {:>25} {:>15}'.format(layer, str(summary[layer]['output_shape']), '{0:,}'.format(summary[layer]['nb_params'])) | |
total_params += summary[layer]['nb_params'] | |
if 'trainable' in summary[layer]: | |
if summary[layer]['trainable'] == True: | |
trainable_params += summary[layer]['nb_params'] | |
print(line_new) | |
print('================================================================') | |
print('Total params: {0:,}'.format(total_params)) | |
print('Trainable params: {0:,}'.format(trainable_params)) | |
print('Non-trainable params: {0:,}'.format(total_params - trainable_params)) | |
print('----------------------------------------------------------------') | |
# return summary | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment