Created
April 24, 2017 08:04
-
-
Save Coderx7/4c669d95e29054310d881c8c26ec5337 to your computer and use it in GitHub Desktop.
wideresidual network in caffe_wrn_128_v8
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "wrn_128_v8" | |
layer { | |
name: "Data1" | |
type: "Data" | |
top: "Data1" | |
top: "Data2" | |
include { | |
phase: TRAIN | |
} | |
transform_param { | |
mirror: true | |
crop_size: 119 | |
mean_value: 104 | |
mean_value: 117 | |
mean_value: 123 | |
} | |
data_param { | |
source: "/PATH/TO/train_imagenet_128_lmdb" | |
batch_size: 128 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "Data1" | |
type: "Data" | |
top: "Data1" | |
top: "Data2" | |
include { | |
phase: TEST | |
} | |
transform_param { | |
mirror: true | |
crop_size: 119 | |
mean_value: 104 | |
mean_value: 117 | |
mean_value: 123 | |
} | |
data_param { | |
source: "/PATH/TO/val_imagenet_128_lmdb" | |
batch_size: 16 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "Convolution1" | |
type: "Convolution" | |
bottom: "Data1" | |
top: "Convolution1" | |
convolution_param { | |
num_output: 32 | |
pad: 0 | |
kernel_size: 3 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm1" | |
type: "BatchNorm" | |
bottom: "Convolution1" | |
top: "Convolution1" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale1" | |
type: "Scale" | |
bottom: "Convolution1" | |
top: "Convolution1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU1" | |
type: "ReLU" | |
bottom: "Convolution1" | |
top: "Convolution1" | |
} | |
layer { | |
name: "Convolution2" | |
type: "Convolution" | |
bottom: "Convolution1" | |
top: "Convolution2" | |
convolution_param { | |
num_output: 32 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm2" | |
type: "BatchNorm" | |
bottom: "Convolution2" | |
top: "Convolution2" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale2" | |
type: "Scale" | |
bottom: "Convolution2" | |
top: "Convolution2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU2" | |
type: "ReLU" | |
bottom: "Convolution2" | |
top: "Convolution2" | |
} | |
layer { | |
name: "Convolution3" | |
type: "Convolution" | |
bottom: "Convolution2" | |
top: "Convolution3" | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm3" | |
type: "BatchNorm" | |
bottom: "Convolution3" | |
top: "Convolution3" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale3" | |
type: "Scale" | |
bottom: "Convolution3" | |
top: "Convolution3" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU3" | |
type: "ReLU" | |
bottom: "Convolution3" | |
top: "Convolution3" | |
} | |
layer { | |
name: "Pooling1" | |
type: "Pooling" | |
bottom: "Convolution3" | |
top: "Pooling1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "Convolution4" | |
type: "Convolution" | |
bottom: "Pooling1" | |
top: "Convolution4" | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm4" | |
type: "BatchNorm" | |
bottom: "Convolution4" | |
top: "Convolution4" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale4" | |
type: "Scale" | |
bottom: "Convolution4" | |
top: "Convolution4" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU4" | |
type: "ReLU" | |
bottom: "Convolution4" | |
top: "Convolution4" | |
} | |
layer { | |
name: "Convolution5" | |
type: "Convolution" | |
bottom: "Convolution4" | |
top: "Convolution5" | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm5" | |
type: "BatchNorm" | |
bottom: "Convolution5" | |
top: "Convolution5" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale5" | |
type: "Scale" | |
bottom: "Convolution5" | |
top: "Convolution5" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU5" | |
type: "ReLU" | |
bottom: "Convolution5" | |
top: "Convolution5" | |
} | |
layer { | |
name: "Convolution6" | |
type: "Convolution" | |
bottom: "Convolution5" | |
top: "Convolution6" | |
convolution_param { | |
num_output: 160 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm6" | |
type: "BatchNorm" | |
bottom: "Convolution6" | |
top: "Convolution6" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale6" | |
type: "Scale" | |
bottom: "Convolution6" | |
top: "Convolution6" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU6" | |
type: "ReLU" | |
bottom: "Convolution6" | |
top: "Convolution6" | |
} | |
layer { | |
name: "Convolution7" | |
type: "Convolution" | |
bottom: "Convolution6" | |
top: "Convolution7" | |
convolution_param { | |
num_output: 160 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Convolution8" | |
type: "Convolution" | |
bottom: "Convolution5" | |
top: "Convolution8" | |
convolution_param { | |
num_output: 160 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Eltwise1" | |
type: "Eltwise" | |
bottom: "Convolution7" | |
bottom: "Convolution8" | |
top: "Eltwise1" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "BatchNorm7" | |
type: "BatchNorm" | |
bottom: "Eltwise1" | |
top: "Eltwise1" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale7" | |
type: "Scale" | |
bottom: "Eltwise1" | |
top: "Eltwise1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU7" | |
type: "ReLU" | |
bottom: "Eltwise1" | |
top: "Eltwise1" | |
} | |
layer { | |
name: "Convolution9" | |
type: "Convolution" | |
bottom: "Eltwise1" | |
top: "Convolution9" | |
convolution_param { | |
num_output: 160 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm8" | |
type: "BatchNorm" | |
bottom: "Convolution9" | |
top: "Convolution9" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale8" | |
type: "Scale" | |
bottom: "Convolution9" | |
top: "Convolution9" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU8" | |
type: "ReLU" | |
bottom: "Convolution9" | |
top: "Convolution9" | |
} | |
layer { | |
name: "Convolution10" | |
type: "Convolution" | |
bottom: "Convolution9" | |
top: "Convolution10" | |
convolution_param { | |
num_output: 160 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Eltwise2" | |
type: "Eltwise" | |
bottom: "Convolution10" | |
bottom: "Eltwise1" | |
top: "Eltwise2" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "BatchNorm9" | |
type: "BatchNorm" | |
bottom: "Eltwise2" | |
top: "Eltwise2" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale9" | |
type: "Scale" | |
bottom: "Eltwise2" | |
top: "Eltwise2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU9" | |
type: "ReLU" | |
bottom: "Eltwise2" | |
top: "Eltwise2" | |
} | |
layer { | |
name: "Convolution11" | |
type: "Convolution" | |
bottom: "Eltwise2" | |
top: "Convolution11" | |
convolution_param { | |
num_output: 160 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm10" | |
type: "BatchNorm" | |
bottom: "Convolution11" | |
top: "Convolution11" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale10" | |
type: "Scale" | |
bottom: "Convolution11" | |
top: "Convolution11" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU10" | |
type: "ReLU" | |
bottom: "Convolution11" | |
top: "Convolution11" | |
} | |
layer { | |
name: "Convolution12" | |
type: "Convolution" | |
bottom: "Convolution11" | |
top: "Convolution12" | |
convolution_param { | |
num_output: 160 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Eltwise3" | |
type: "Eltwise" | |
bottom: "Convolution12" | |
bottom: "Eltwise2" | |
top: "Eltwise3" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "BatchNorm11" | |
type: "BatchNorm" | |
bottom: "Eltwise3" | |
top: "Eltwise3" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale11" | |
type: "Scale" | |
bottom: "Eltwise3" | |
top: "Eltwise3" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU11" | |
type: "ReLU" | |
bottom: "Eltwise3" | |
top: "Eltwise3" | |
} | |
layer { | |
name: "Convolution13" | |
type: "Convolution" | |
bottom: "Eltwise3" | |
top: "Convolution13" | |
convolution_param { | |
num_output: 160 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm12" | |
type: "BatchNorm" | |
bottom: "Convolution13" | |
top: "Convolution13" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale12" | |
type: "Scale" | |
bottom: "Convolution13" | |
top: "Convolution13" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU12" | |
type: "ReLU" | |
bottom: "Convolution13" | |
top: "Convolution13" | |
} | |
layer { | |
name: "Convolution14" | |
type: "Convolution" | |
bottom: "Convolution13" | |
top: "Convolution14" | |
convolution_param { | |
num_output: 160 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Eltwise4" | |
type: "Eltwise" | |
bottom: "Convolution14" | |
bottom: "Eltwise3" | |
top: "Eltwise4" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "Convolution15" | |
type: "Convolution" | |
bottom: "Eltwise4" | |
top: "Convolution15" | |
convolution_param { | |
num_output: 320 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm13" | |
type: "BatchNorm" | |
bottom: "Convolution15" | |
top: "Convolution15" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale13" | |
type: "Scale" | |
bottom: "Convolution15" | |
top: "Convolution15" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU13" | |
type: "ReLU" | |
bottom: "Convolution15" | |
top: "Convolution15" | |
} | |
layer { | |
name: "Convolution16" | |
type: "Convolution" | |
bottom: "Convolution15" | |
top: "Convolution16" | |
convolution_param { | |
num_output: 320 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Convolution17" | |
type: "Convolution" | |
bottom: "Eltwise4" | |
top: "Convolution17" | |
convolution_param { | |
num_output: 320 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Eltwise5" | |
type: "Eltwise" | |
bottom: "Convolution16" | |
bottom: "Convolution17" | |
top: "Eltwise5" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "BatchNorm14" | |
type: "BatchNorm" | |
bottom: "Eltwise5" | |
top: "Eltwise5" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale14" | |
type: "Scale" | |
bottom: "Eltwise5" | |
top: "Eltwise5" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU14" | |
type: "ReLU" | |
bottom: "Eltwise5" | |
top: "Eltwise5" | |
} | |
layer { | |
name: "Convolution18" | |
type: "Convolution" | |
bottom: "Eltwise5" | |
top: "Convolution18" | |
convolution_param { | |
num_output: 320 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm15" | |
type: "BatchNorm" | |
bottom: "Convolution18" | |
top: "Convolution18" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale15" | |
type: "Scale" | |
bottom: "Convolution18" | |
top: "Convolution18" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU15" | |
type: "ReLU" | |
bottom: "Convolution18" | |
top: "Convolution18" | |
} | |
layer { | |
name: "Convolution19" | |
type: "Convolution" | |
bottom: "Convolution18" | |
top: "Convolution19" | |
convolution_param { | |
num_output: 320 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Eltwise6" | |
type: "Eltwise" | |
bottom: "Convolution19" | |
bottom: "Eltwise5" | |
top: "Eltwise6" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "BatchNorm16" | |
type: "BatchNorm" | |
bottom: "Eltwise6" | |
top: "Eltwise6" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale16" | |
type: "Scale" | |
bottom: "Eltwise6" | |
top: "Eltwise6" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU16" | |
type: "ReLU" | |
bottom: "Eltwise6" | |
top: "Eltwise6" | |
} | |
layer { | |
name: "Convolution20" | |
type: "Convolution" | |
bottom: "Eltwise6" | |
top: "Convolution20" | |
convolution_param { | |
num_output: 320 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm17" | |
type: "BatchNorm" | |
bottom: "Convolution20" | |
top: "Convolution20" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale17" | |
type: "Scale" | |
bottom: "Convolution20" | |
top: "Convolution20" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU17" | |
type: "ReLU" | |
bottom: "Convolution20" | |
top: "Convolution20" | |
} | |
layer { | |
name: "Convolution21" | |
type: "Convolution" | |
bottom: "Convolution20" | |
top: "Convolution21" | |
convolution_param { | |
num_output: 320 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Eltwise7" | |
type: "Eltwise" | |
bottom: "Convolution21" | |
bottom: "Eltwise6" | |
top: "Eltwise7" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "BatchNorm18" | |
type: "BatchNorm" | |
bottom: "Eltwise7" | |
top: "Eltwise7" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale18" | |
type: "Scale" | |
bottom: "Eltwise7" | |
top: "Eltwise7" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU18" | |
type: "ReLU" | |
bottom: "Eltwise7" | |
top: "Eltwise7" | |
} | |
layer { | |
name: "Convolution22" | |
type: "Convolution" | |
bottom: "Eltwise7" | |
top: "Convolution22" | |
convolution_param { | |
num_output: 320 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm19" | |
type: "BatchNorm" | |
bottom: "Convolution22" | |
top: "Convolution22" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale19" | |
type: "Scale" | |
bottom: "Convolution22" | |
top: "Convolution22" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU19" | |
type: "ReLU" | |
bottom: "Convolution22" | |
top: "Convolution22" | |
} | |
layer { | |
name: "Convolution23" | |
type: "Convolution" | |
bottom: "Convolution22" | |
top: "Convolution23" | |
convolution_param { | |
num_output: 320 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Eltwise8" | |
type: "Eltwise" | |
bottom: "Convolution23" | |
bottom: "Eltwise7" | |
top: "Eltwise8" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "Convolution24" | |
type: "Convolution" | |
bottom: "Eltwise8" | |
top: "Convolution24" | |
convolution_param { | |
num_output: 640 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm20" | |
type: "BatchNorm" | |
bottom: "Convolution24" | |
top: "Convolution24" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale20" | |
type: "Scale" | |
bottom: "Convolution24" | |
top: "Convolution24" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU20" | |
type: "ReLU" | |
bottom: "Convolution24" | |
top: "Convolution24" | |
} | |
layer { | |
name: "Convolution25" | |
type: "Convolution" | |
bottom: "Convolution24" | |
top: "Convolution25" | |
convolution_param { | |
num_output: 640 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Convolution26" | |
type: "Convolution" | |
bottom: "Eltwise8" | |
top: "Convolution26" | |
convolution_param { | |
num_output: 640 | |
bias_term: false | |
pad: 0 | |
kernel_size: 1 | |
stride: 2 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Eltwise9" | |
type: "Eltwise" | |
bottom: "Convolution25" | |
bottom: "Convolution26" | |
top: "Eltwise9" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "BatchNorm21" | |
type: "BatchNorm" | |
bottom: "Eltwise9" | |
top: "Eltwise9" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale21" | |
type: "Scale" | |
bottom: "Eltwise9" | |
top: "Eltwise9" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU21" | |
type: "ReLU" | |
bottom: "Eltwise9" | |
top: "Eltwise9" | |
} | |
layer { | |
name: "Convolution27" | |
type: "Convolution" | |
bottom: "Eltwise9" | |
top: "Convolution27" | |
convolution_param { | |
num_output: 640 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm22" | |
type: "BatchNorm" | |
bottom: "Convolution27" | |
top: "Convolution27" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale22" | |
type: "Scale" | |
bottom: "Convolution27" | |
top: "Convolution27" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU22" | |
type: "ReLU" | |
bottom: "Convolution27" | |
top: "Convolution27" | |
} | |
layer { | |
name: "Convolution28" | |
type: "Convolution" | |
bottom: "Convolution27" | |
top: "Convolution28" | |
convolution_param { | |
num_output: 640 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Eltwise10" | |
type: "Eltwise" | |
bottom: "Convolution28" | |
bottom: "Eltwise9" | |
top: "Eltwise10" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "BatchNorm23" | |
type: "BatchNorm" | |
bottom: "Eltwise10" | |
top: "Eltwise10" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale23" | |
type: "Scale" | |
bottom: "Eltwise10" | |
top: "Eltwise10" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU23" | |
type: "ReLU" | |
bottom: "Eltwise10" | |
top: "Eltwise10" | |
} | |
layer { | |
name: "Convolution29" | |
type: "Convolution" | |
bottom: "Eltwise10" | |
top: "Convolution29" | |
convolution_param { | |
num_output: 640 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm24" | |
type: "BatchNorm" | |
bottom: "Convolution29" | |
top: "Convolution29" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale24" | |
type: "Scale" | |
bottom: "Convolution29" | |
top: "Convolution29" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU24" | |
type: "ReLU" | |
bottom: "Convolution29" | |
top: "Convolution29" | |
} | |
layer { | |
name: "Convolution30" | |
type: "Convolution" | |
bottom: "Convolution29" | |
top: "Convolution30" | |
convolution_param { | |
num_output: 640 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Eltwise11" | |
type: "Eltwise" | |
bottom: "Convolution30" | |
bottom: "Eltwise10" | |
top: "Eltwise11" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "BatchNorm25" | |
type: "BatchNorm" | |
bottom: "Eltwise11" | |
top: "Eltwise11" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale25" | |
type: "Scale" | |
bottom: "Eltwise11" | |
top: "Eltwise11" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU25" | |
type: "ReLU" | |
bottom: "Eltwise11" | |
top: "Eltwise11" | |
} | |
layer { | |
name: "Convolution31" | |
type: "Convolution" | |
bottom: "Eltwise11" | |
top: "Convolution31" | |
convolution_param { | |
num_output: 640 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "BatchNorm26" | |
type: "BatchNorm" | |
bottom: "Convolution31" | |
top: "Convolution31" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
batch_norm_param { | |
use_global_stats: false | |
} | |
} | |
layer { | |
name: "Scale26" | |
type: "Scale" | |
bottom: "Convolution31" | |
top: "Convolution31" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "ReLU26" | |
type: "ReLU" | |
bottom: "Convolution31" | |
top: "Convolution31" | |
} | |
layer { | |
name: "Convolution32" | |
type: "Convolution" | |
bottom: "Convolution31" | |
top: "Convolution32" | |
convolution_param { | |
num_output: 640 | |
bias_term: false | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "msra" | |
} | |
} | |
} | |
layer { | |
name: "Eltwise12" | |
type: "Eltwise" | |
bottom: "Convolution32" | |
bottom: "Eltwise11" | |
top: "Eltwise12" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "Pooling2" | |
type: "Pooling" | |
bottom: "Eltwise12" | |
top: "Pooling2" | |
pooling_param { | |
pool: AVE | |
kernel_size: 4 | |
stride: 4 | |
} | |
} | |
layer { | |
name: "InnerProduct1" | |
type: "InnerProduct" | |
bottom: "Pooling2" | |
top: "InnerProduct1" | |
inner_product_param { | |
num_output: 1000 | |
} | |
} | |
layer { | |
name: "SoftmaxWithLoss1" | |
type: "SoftmaxWithLoss" | |
bottom: "InnerProduct1" | |
bottom: "Data2" | |
top: "SoftmaxWithLoss1" | |
} | |
layer { | |
name: "Accuracy1" | |
type: "Accuracy" | |
bottom: "InnerProduct1" | |
bottom: "Data2" | |
top: "Accuracy1" | |
include { | |
phase: TEST | |
} | |
} | |
layer { | |
name: "Accuracy5" | |
type: "Accuracy" | |
bottom: "InnerProduct1" | |
bottom: "Data2" | |
top: "Accuracy5" | |
include { | |
phase: TEST | |
} | |
accuracy_param { | |
top_k: 5 | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment