Created
June 30, 2020 06:59
-
-
Save CookiePPP/29aa720e78e7f8038ee0153027926238 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" Use torchMoji to score texts for emoji distribution. | |
The resulting emoji ids (0-63) correspond to the mapping | |
in emoji_overview.png file at the root of the torchMoji repo. | |
Writes the result to a csv file. | |
""" | |
from __future__ import print_function, division, unicode_literals | |
import example_helper | |
import json | |
import csv | |
import numpy as np | |
import os | |
from tqdm import tqdm | |
from utils.torchmoji.sentence_tokenizer import SentenceTokenizer | |
from utils.torchmoji.model_def import torchmoji_feature_encoding | |
from utils.torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH | |
def files_to_list(filename): | |
""" | |
Takes a text file of filenames and makes a list of filenames | |
""" | |
with open(filename, encoding='utf-8') as f: | |
files = f.readlines() | |
files = [f.rstrip() for f in files] | |
return files | |
def top_elements(array, k): | |
ind = np.argpartition(array, -k)[-k:] | |
return ind[np.argsort(array[ind])][::-1] | |
INPUT_PATHS = [ | |
'/media/cookie/Samsung 860 QVO/ClipperDatasetV2/filelists/train_taca2.txt', | |
'/media/cookie/Samsung 860 QVO/ClipperDatasetV2/filelists/validation_taca2.txt', | |
] | |
BATCH_SIZE = 50 | |
# get dataset from text files | |
dataset = [j.split("|") for i in [files_to_list(x) for x in INPUT_PATHS] for j in i] | |
paths = [x[0] for x in dataset] | |
texts = [x[1] for x in dataset] | |
# remove filtered_chars from text | |
filtered_chars=["☺",""] | |
for i, text in enumerate(texts): | |
for filtered_char in filtered_chars: | |
texts[i] = texts[i].replace(filtered_char,"") | |
data = list(zip(paths,texts)) | |
maxlen = 120 | |
print('Tokenizing using dictionary from {}'.format(VOCAB_PATH)) | |
with open(VOCAB_PATH, 'r') as f: | |
vocabulary = json.load(f) | |
st = SentenceTokenizer(vocabulary, maxlen) | |
print('Loading model from {}.'.format(PRETRAINED_PATH)) | |
model = torchmoji_feature_encoding(PRETRAINED_PATH) | |
print(model) | |
print('Running predictions.') | |
for i in tqdm(range(0, len(data), BATCH_SIZE), total=len(list(range(0, len(data), BATCH_SIZE))), smoothing=0.01): | |
paths = [x[0] for x in data[i:i+BATCH_SIZE]] | |
texts = [x[1] for x in data[i:i+BATCH_SIZE]] | |
#print(texts) | |
tokenized, _, _ = st.tokenize_sentences(texts) | |
embedding = model(tokenized) # returns np array [B, Embed] | |
for j in range(len(embedding)): | |
filepath_without_ext = ".".join(paths[j].split(".")[:-1]) | |
path_path_len = min(len(filepath_without_ext), 999) | |
file_path_safe = filepath_without_ext[0:path_path_len] | |
#if os.path.exists(file_path_safe+"_embed.npy"): os.remove(file_path_safe+"_embed.npy") | |
np.save(file_path_safe + "_.npy", embedding[j]) | |
#tqdm.write(str(embedding[j])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment