Created
July 26, 2017 12:38
-
-
Save Corwinpro/0c32046e56023e1e1dd26dc4b57360bb to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from dolfin import * | |
import numpy as np | |
import math | |
from petsc4py import PETSc | |
#BCSType = 'Dirichlet' | |
#BCSType = 'Neumann' | |
BCSType = 'Mixed' | |
print BCSType | |
nx = 100 | |
Z = Constant(1.) | |
dV = 0.0 | |
mesh = IntervalMesh(nx, dV, 1.) | |
V = FunctionSpace(mesh, "CG", 2) | |
class boundaryLeft(SubDomain): | |
def inside (self, x, on_boundary): | |
return on_boundary and near(x[0],dV) | |
class boundaryRight(SubDomain): | |
def inside (self, x, on_boundary): | |
return on_boundary and near(x[0],1.) | |
boundaryLeft = boundaryLeft(); | |
boundaryRight = boundaryRight(); | |
def MarkBoundaries(mesh): | |
sub_domains = MeshFunction("int", mesh, mesh.topology().dim()- 1) | |
boundaries = FacetFunction("size_t", mesh) | |
boundaryLeft.mark(sub_domains,1) | |
boundaryRight.mark(sub_domains,2) | |
ds = Measure('ds', domain=mesh, subdomain_data=sub_domains) | |
def eigenvalues(V, bcs): | |
p = TrialFunction(V) | |
q = TestFunction(V) | |
a = -inner(grad(p), grad(q))*dx | |
if (BCSType == 'Mixed'): | |
a += (-Z*q*p)*ds | |
b = inner(q, p)*dx | |
A = PETScMatrix() | |
assemble(a, tensor = A) | |
B = PETScMatrix() | |
assemble(b, tensor = B) | |
[bc.apply(A) for bc in bcs] | |
[bc.zero(B) for bc in bcs] | |
solver = SLEPcEigenSolver(A, B) | |
solver.parameters["solver"] = "arpack" | |
eps = solver.eps(); st = eps.getST(); | |
st.setType('sinvert'); ksp = st.getKSP(); ksp.setType('preonly'); | |
pc = ksp.getPC(); pc.setType('lu'); pc.setFactorSolverPackage('mumps'); | |
solver.parameters["spectrum"] = "smallest magnitude" | |
solver.parameters["spectral_transform"] = "shift-and-invert" | |
solver.parameters["spectral_shift"] = 0.0 | |
neigs = 1 | |
solver.solve(neigs) | |
computed_eigenvalues = [] | |
for i in range(min(neigs, solver.get_number_converged())): | |
(r,im,rx,ix) = solver.get_eigenpair(i) | |
#computed_eigenvalues.append(math.sqrt(abs(r))/math.pi) | |
computed_eigenvalues.append([r,im]) | |
realParts = Function(V, rx) | |
imagParts = Function(V, ix) | |
return np.sort(np.array(computed_eigenvalues)) | |
def print_eigenvalues(mesh): | |
MarkBoundaries(mesh) | |
if (BCSType == 'Dirichlet'): | |
bcs = [DirichletBC(V, Constant(0.), boundaryLeft), | |
DirichletBC(V, Constant(0.), boundaryRight)] | |
elif (BCSType == 'Neumann'): | |
bcs = [] | |
elif (BCSType == 'Mixed'): | |
bcs = [DirichletBC(V, Constant(0.), boundaryRight)] | |
eig = eigenvalues(V, bcs); print eig | |
print_eigenvalues(mesh) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment