Created
November 24, 2013 12:45
-
-
Save Corwinpro/7626890 to your computer and use it in GitHub Desktop.
Теплопроводность неявная + Кранк-николсон
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#define _CRT_SECURE_NO_DEPRECATE | |
#include "stdio.h" | |
#include "math.h" | |
#include <iostream> | |
using namespace std; | |
/* | |
Общие вопросы по теплопроводности: | |
Устойчивость для явной схемы и показать развал | |
Декремент затухания и сравнить с аналитикой | |
Общее решение T = Summ[ exp(-pi^2 n^2 t) * Bn * sin(pi*n*x)]; Bn задаются начальными условиями | |
*/ | |
double lambda = 1.0; //Коэффициент теплопроводности | |
double t = 0.01; //Условие монотонности для схемы Кранка-Николсона t < h^2 | |
double h = 0.2; | |
double a = 0.0; | |
double b = 1.0; | |
double Ua = 1.0; //left border condition | |
double Ub = 0.0; //right border condition | |
int size = 1+(b-a)/h; | |
double function(double x) //T(t = 0) | |
{ | |
return x*x*(1-x); | |
} | |
void set_conditions(double * u) //задание начальные условия | |
{ | |
for (int i = 0; i*h <= (b-a); i++) | |
*(u+i) = function(i*h+a); | |
} | |
void massive_set(double * a, double * b, double * c, double * f,double * u) //Неявная схема | |
{ | |
for(int i = 0; i < size-1; i++) | |
{ | |
*(a+i) = -1.0/(h*h); | |
*(b+i) = -2.0/(h*h)-1.0/t; | |
*(c+i) = -1.0/(h*h); | |
*(f+i) = -*(u+i)/t; | |
} | |
*a = 0.0; | |
*(c+size-1) = 0.0; | |
//Set left border conditions: (derivat.) - задание условия на производную слева | |
*b = 2.0/3.0; | |
*c = 2.0/3.0 - h*h/(3.0*t); | |
*f = *(u+1)*h*h/(3.0*t) - 2.0/3.0 * h * Ua; | |
/* | |
//Set left border conditions: - задание условия на значение слева | |
*b = 1.0; | |
*c = 0.0; | |
*f = Ua; | |
*/ | |
//Set right border condition | |
*(a+size-1) = 0; | |
*(b+size-1) = 1; | |
*(f+size-1) = Ub; | |
return; | |
} | |
void massive_set_KN(double * a, double * b, double * c, double * f,double * u) //Схема Кранка-Николсона | |
{ | |
for(int i = 0; i < size-1; i++) | |
{ | |
*(a+i) = -1.0/(2*h*h); | |
*(b+i) = -1.0/(h*h)-1.0/t; | |
*(c+i) = -1.0/(2*h*h); | |
*(f+i) = -*(u+i)*(1/t-1/(h*h))-*(u+i+1)/(2*h*h)-*(u+i-1)/(2*h*h); | |
} | |
*a = 0.0; | |
*(c+size-1) = 0.0; | |
/* | |
//Set left border conditions: (derivat.) | |
*b = 2.0/3.0; | |
*c = 2.0/3.0 - h*h/(3.0*t); | |
*f = *(u+1)*h*h/(3.0*t) - 2.0/3.0 * h * Ua; | |
*/ | |
//Set left border conditions: | |
*b = 1.0; | |
*c = 0.0; | |
*f = Ua; | |
//Set right border condition | |
*(a+size-1) = 0; | |
*(b+size-1) = 1; | |
*(f+size-1) = Ub; | |
return; | |
} | |
void massive_get(double * a, double * b, double * c, double * f, double * beta, double * z) //Заполнение массивов бета, альфа и Z | |
{ | |
*beta = *c / *b; | |
*z = *f / *b; | |
for(int i = 1; i < size-1; i++) | |
{ | |
*(beta+i) = *(c+i) / (*(b+i) - (*(a+i))*(*(beta+i-1))); | |
*(z+i) = (*(f+i) +(*(a+i))*(*(z+i-1)))/(*(b+i) - (*(a+i))*(*(beta+i-1))); | |
} | |
return; | |
} | |
void get_solution(double * beta, double * z,double * u) //конечный пересчет | |
{ | |
*(u+size-1) = Ub; | |
for (int i = size-2; i >= 0; i--) | |
*(u+i) = *(beta+i) * (*(u+i+1)) + *(z+i); | |
return; | |
} | |
void main() | |
{ | |
FILE * file = fopen("file.txt", "w"); | |
double * u = new double[size * sizeof(double)]; | |
double * u_next = new double[size * sizeof(double)]; | |
set_conditions(u); //Set start temperature distribution | |
//Massives for non-clear scheme | |
double * a = new double[size * sizeof(double)]; | |
double * b = new double[size * sizeof(double)]; | |
double * c = new double[size * sizeof(double)]; | |
double * f = new double[size * sizeof(double)]; | |
double * beta = new double[size * sizeof(double)]; | |
double * z = new double[size * sizeof(double)]; | |
double time = 0.1; | |
double time_current = 0.0; | |
while (time_current < time) | |
{ | |
time_current = time_current + t; | |
massive_set(a,b,c,f,u); | |
massive_get(a,b,c,f,beta,z); | |
get_solution(beta,z,u_next); | |
for (int i = 0; i < size; i++) | |
*(u+i) = *(u_next + i); | |
} | |
for (int i = 0; i < size; i++) | |
fprintf(file, "%e\n", *(u+i));//fprintf(file, "%e %e\n", i*h, *(u+i)); - в комменте вывод с координатами | |
return; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment