Created
March 10, 2019 15:27
-
-
Save Corwinpro/d71fd71c58a4bdecad80027359089979 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
train_df['year_month'] = train_df['time1'].apply(lambda t: 100 * t.year + t.month).values.reshape(-1, 1) | |
test_df['year_month'] = test_df['time1'].apply(lambda t: 100 * t.year + t.month).values.reshape(-1, 1) | |
print(train_df['year_month'].loc[y_train == 1].describe()) | |
train_df = train_df[(train_df['year_month'] >= 201401)]#201309 | |
print(train_df['year_month'].loc[y_train == 1].describe()) | |
### Output | |
count 1241.000000 | |
mean 201369.155520 | |
std 44.192148 | |
min 201303.000000 | |
25% 201311.000000 | |
50% 201402.000000 | |
75% 201402.000000 | |
max 201402.000000 | |
Name: year_month, dtype: float64 | |
count 1241.000000 | |
mean 201402.705077 | |
std 0.950407 | |
min 201401.000000 | |
25% 201402.000000 | |
50% 201403.000000 | |
75% 201403.000000 | |
max 201404.000000 | |
Name: year_month, dtype: float64 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment