-
-
Save Cospel/f364df97b4944cec2dc0 to your computer and use it in GitHub Desktop.
RBM procedure using tensorflow
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/ | |
#https://www.tensorflow.org/versions/r0.7/api_docs/python/constant_op.html#random_uniform | |
import tensorflow as tf | |
import numpy as np | |
import input_data | |
import Image | |
from util import tile_raster_images | |
def sample_prob(probs): | |
return tf.nn.relu(tf.sign(probs - tf.random_uniform(tf.shape(probs)))) | |
alpha = 1.0 | |
batchsize = 100 | |
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) | |
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images,\ | |
mnist.test.labels | |
X = tf.placeholder("float", [None, 784]) | |
rbm_w = tf.placeholder("float", [784, 500]) | |
rbm_vb = tf.placeholder("float", [784]) | |
rbm_hb = tf.placeholder("float", [500]) | |
h0 = sample_prob(tf.nn.sigmoid(tf.matmul(X, rbm_w) + rbm_hb)) | |
v1 = sample_prob(tf.nn.sigmoid(tf.matmul(h0, tf.transpose(rbm_w)) + rbm_vb)) | |
h1 = tf.nn.sigmoid(tf.matmul(v1, rbm_w) + rbm_hb) | |
w_positive_grad = tf.matmul(tf.transpose(X), h0) | |
w_negative_grad = tf.matmul(tf.transpose(v1), h1) | |
update_w = rbm_w + alpha * (w_positive_grad - w_negative_grad) / tf.to_float(tf.shape(X)[0]) | |
update_vb = rbm_vb + alpha * tf.reduce_mean(X - v1, 0) | |
update_hb = rbm_hb + alpha * tf.reduce_mean(h0 - h1, 0) | |
h_sample = sample_prob(tf.nn.sigmoid(tf.matmul(X, rbm_w) + rbm_hb)) | |
v_sample = sample_prob(tf.nn.sigmoid(tf.matmul(h_sample, tf.transpose(rbm_w)) + rbm_vb)) | |
err = X - v_sample | |
err_sum = tf.reduce_mean(err * err) | |
sess = tf.Session() | |
init = tf.initialize_all_variables() | |
sess.run(init) | |
n_w = np.zeros([784, 500], np.float32) | |
n_vb = np.zeros([784], np.float32) | |
n_hb = np.zeros([500], np.float32) | |
o_w = np.zeros([784, 500], np.float32) | |
o_vb = np.zeros([784], np.float32) | |
o_hb = np.zeros([500], np.float32) | |
print sess.run(err_sum, feed_dict={X: trX, rbm_w: o_w, rbm_vb: o_vb, rbm_hb: o_hb}) | |
for start, end in zip(range(0, len(trX), batchsize), range(batchsize, len(trX), batchsize)): | |
batch = trX[start:end] | |
n_w = sess.run(update_w, feed_dict={ | |
X: batch, rbm_w: o_w, rbm_vb: o_vb, rbm_hb: o_hb}) | |
n_vb = sess.run(update_vb, feed_dict={ | |
X: batch, rbm_w: o_w, rbm_vb: o_vb, rbm_hb: o_hb}) | |
n_hb = sess.run(update_hb, feed_dict={ | |
X: batch, rbm_w: o_w, rbm_vb: o_vb, rbm_hb: o_hb}) | |
o_w = n_w | |
o_vb = n_vb | |
o_hb = n_hb | |
if start % 10000 == 0: | |
print sess.run( | |
err_sum, feed_dict={X: trX, rbm_w: n_w, rbm_vb: n_vb, rbm_hb: n_hb}) | |
image = Image.fromarray( | |
tile_raster_images( | |
X=n_w.T, | |
img_shape=(28, 28), | |
tile_shape=(25, 20), | |
tile_spacing=(1, 1) | |
) | |
) | |
image.save("rbm_%d.png" % (start / 10000)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment