Last active
June 20, 2021 09:31
-
-
Save Curt-Park/5ae319a87ac96de760ed13cb258c7c59 to your computer and use it in GitHub Desktop.
Get the positive integer solution by Genetic Algorithm, given a / (b + c) + b / (a + c) + c / (a + b) = 4.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Genetic algorithm solver. | |
Given the following function: | |
y = f(w1:w3) = w1 / (w2 + w3) + w2 / (w1 + w3) + w3 / (w1 + w2) | |
where y=4 | |
What are the best values for the 3 weights (w1 to w3)? | |
We are going to use the genetic algorithm to optimize this function. | |
""" | |
import pygad | |
import numpy | |
from fractions import Fraction | |
# number of generations | |
num_generations = 100000 | |
# number of solutions to be selected as parents in the mating pool | |
num_parents_mating = 10 | |
# number of solutions in the population | |
sol_per_pop = 1000 | |
# function output | |
desired_output = 4 | |
# mutation parameters | |
mutation_probability = 0.99 | |
random_mutation_min_val = -10 | |
random_mutation_max_val = 10 | |
# gene parameters | |
gene_low = 0 | |
gene_high = int(1e96) | |
gene_type = [int, int, int] | |
gene_space = [{"low": gene_low, "high": gene_high}] * len(gene_type) | |
# epsilon | |
eps = 1e-7 | |
def fn(solution): | |
output = 0 | |
output += solution[0] / (solution[1] + solution[2] + eps) | |
output += solution[1] / (solution[0] + solution[2] + eps) | |
output += solution[2] / (solution[0] + solution[1] + eps) | |
return output | |
def fitness_func(solution, solution_idx): | |
output = fn(solution) | |
fitness = 1.0 / (numpy.abs(output - desired_output) + eps) | |
return fitness | |
def on_generation(ga_instance): | |
best_solution = ga_instance.best_solution()[0] | |
fitness = ga_instance.best_solution()[1] | |
print(f"Generation: {ga_instance.generations_completed}") | |
print(f"\tBest Solution = {best_solution}") | |
print(f"\tFitness = {fitness}") | |
print(f"\tOutput = {fn(best_solution)}") | |
print() | |
ga_instance = pygad.GA( | |
num_generations=num_generations, | |
num_parents_mating=num_parents_mating, | |
sol_per_pop=sol_per_pop, | |
fitness_func=fitness_func, | |
mutation_probability=mutation_probability, | |
random_mutation_min_val=random_mutation_min_val, | |
random_mutation_max_val=random_mutation_max_val, | |
on_generation=on_generation, | |
num_genes=len(gene_type), | |
gene_space=gene_space, | |
gene_type=gene_type, | |
) | |
# Running the GA to optimize the parameters of the function. | |
ga_instance.run() | |
# Returning the details of the best solution. | |
solution, solution_fitness, solution_idx = ga_instance.best_solution( | |
ga_instance.last_generation_fitness | |
) | |
print(f"Parameters of the best solution : {solution}") | |
print(f"Fitness value of the best solution: {solution_fitness}") | |
print(f"The function output: {fn(solution)}") | |
ga_instance.plot_fitness() | |
# verification | |
x = Fraction(solution[0], solution[1] + solution[2]) | |
y = Fraction(solution[1], solution[0] + solution[2]) | |
z = Fraction(solution[2], solution[0] + solution[1]) | |
out = x + y + z | |
print(out) | |
assert out == Fraction(4, 1) |
Parameters of the best solution : [39019250076521295217317185053082552883919275822398149692658500881335160107394798713583993618432
924324823125432460059785457267475183317228805791599002535468920824284456662552641964618006134784
207455897457411893865061936344035918666029691739128390547583982434470344032139724600331189878784]
Fitness value of the best solution: 2756642.650468617
The function output: 4.000000262760113
Not optimal solution.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://www.quora.com/How-do-you-find-the-positive-integer-solutions-to-frac-x-y+z-+-frac-y-z+x-+-frac-z-x+y-4