Usually, located at /usr/local/cuda/bin
$ nvprof python train_mnist.py
I prefer to use --print-gpu-trace.
#!/bin/bash | |
# install CUDA Toolkit v9.0 | |
# instructions from https://developer.nvidia.com/cuda-downloads (linux -> x86_64 -> Ubuntu -> 16.04 -> deb) | |
CUDA_REPO_PKG="cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64-deb" | |
wget https://developer.nvidia.com/compute/cuda/9.0/Prod/local_installers/${CUDA_REPO_PKG} | |
sudo dpkg -i ${CUDA_REPO_PKG} | |
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub | |
sudo apt-get update | |
sudo apt-get -y install cuda-9-0 |
#---------------------------------------------- | |
#--- Author : Ahmet Ozlu | |
#--- Mail : [email protected] | |
#--- Date : 21st September 2017 | |
#---------------------------------------------- | |
import face_recognition | |
import cv2 | |
import os | |
import create_csv |
cmake_minimum_required(VERSION 3.5) | |
# Find python and Boost - both are required dependencies | |
find_package(PythonLibs 2.7 REQUIRED) | |
find_package(Boost COMPONENTS python REQUIRED) | |
# Without this, any build libraries automatically have names "lib{x}.so" | |
set(CMAKE_SHARED_MODULE_PREFIX "") | |
# Add a shared module - modules are intended to be imported at runtime. |
import numpy as np | |
import gym | |
import random | |
from collections import deque | |
from keras.layers import Input, Activation, Dense, Flatten, RepeatVector, Reshape | |
from keras.layers.convolutional import Conv2D | |
from keras.models import Model | |
from keras import backend as K |
""" | |
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) | |
BSD License | |
""" | |
import numpy as np | |
# data I/O | |
data = open('input.txt', 'r').read() # should be simple plain text file | |
chars = list(set(data)) | |
data_size, vocab_size = len(data), len(chars) |
As configured in my dotfiles.
start new:
tmux
start new with session name: