Last active
November 26, 2020 05:11
-
-
Save DMTSource/21964425b18cd3cf1e5843c2baf62d54 to your computer and use it in GitHub Desktop.
Deap Hypervolume comparison for varying population size and number of objectives, testing for use with high dimensional NSGA III with many objectives (over 8).) Discussion here: https://groups.google.com/g/deap-users/c/XLfLa3at6pw
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Derek Tishler | |
# Deap Hypervolume comparison for varying population size and number of objectives, | |
# testing for use with high dimensional NSGA III with many objectives (over 8).) | |
# Discussion here, also required fitness_values.txt with 212x14 array of fitness values per ind in pop: | |
# https://groups.google.com/g/deap-users/c/XLfLa3at6pw | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from time import time | |
from deap.tools._hypervolume import hv | |
hv_calc_max = 10. #seconds max we allow the hv to compute before stopping scan | |
def perform_stress_test(pop_fits=None, ref_hyp_vals=None, hypervolume_f=None, label=None): | |
results = {} | |
results['ndim'] = [] | |
results['hypervolume'] = [] | |
results['elapsed'] = [] | |
for i in range(1, len(pop_fits)): | |
start_time = time() | |
value_hypervolume = hypervolume_f(pop_fits[:i], ref_hyp_vals) | |
elapsed = time()-start_time | |
print('n_obj:%d n_pop:%d / %d\thypervolume: %g\telapsed: %g sec' % (pop_fits.shape[1], | |
i, | |
len(pop_fits), | |
value_hypervolume, | |
elapsed)) | |
results['ndim'].append(i) | |
results['hypervolume'].append(value_hypervolume) | |
results['elapsed'].append(elapsed) | |
# Give up once too slow (>20 sec per hv calc) | |
if elapsed > hv_calc_max: | |
break | |
result_df = pd.DataFrame.from_dict(results) | |
plt.figure(figsize=(6,4), dpi=150) | |
plt.plot(result_df['ndim'].values, result_df['elapsed'].values) | |
plt.title(label) | |
plt.xlabel('n_pop / %d' %len(ttt)) | |
plt.ylabel('hypervolume comp time (seconds)') | |
plt.grid() | |
plt.tight_layout() | |
plt.savefig(label+'.png') | |
plt.clf() | |
plt.close() | |
return result_df | |
ttt = np.loadtxt('fitness_values.txt') | |
ref_hyp = np.array([19.685825,962.5723419,5.69326178,0.043162976, | |
11.61159696,0.01699155,0.018175168,223965.1889, | |
2.61386E-06,0.016530917,1.9237E-06,2.82397E-06, | |
4472.93138,4.81537E-06]) | |
if __name__ == "__main__": | |
### 64 bit | |
print('Fitness dtype(pop & ref):') | |
print(ttt.dtype) | |
print(ref_hyp.dtype) | |
n_obj_1 = 7 | |
test_1_df = perform_stress_test(pop_fits = ttt[:,:n_obj_1], | |
ref_hyp_vals = ref_hyp[:n_obj_1], | |
hypervolume_f = hv.hypervolume, | |
label = '%d-Objective'%n_obj_1) | |
n_obj_2 = 10 | |
test_2_df = perform_stress_test(pop_fits = ttt[:,:n_obj_2], | |
ref_hyp_vals = ref_hyp[:n_obj_2], | |
hypervolume_f = hv.hypervolume, | |
label = '%d-Objective'%n_obj_2) | |
test_3_df = perform_stress_test(pop_fits = ttt, | |
ref_hyp_vals = ref_hyp, | |
hypervolume_f = hv.hypervolume, | |
label = '%d-Objective'%len(ref_hyp)) | |
plt.figure(figsize=(6,4), dpi=150) | |
plt.semilogy(test_1_df['ndim'].values, test_1_df['elapsed'].values, label='%d Obj'%n_obj_1, c='dodgerblue') | |
plt.semilogy(test_2_df['ndim'].values, test_2_df['elapsed'].values, label='%d Obj'%n_obj_2, c='forestgreen') | |
plt.semilogy(test_3_df['ndim'].values, test_3_df['elapsed'].values, label='%d Obj'%len(ref_hyp), c='orangered') | |
plt.legend() | |
plt.axhline(hv_calc_max, c='r', ls='--') | |
plt.title("deap hypervolume") | |
plt.xlabel('n_pop / %d' %len(ttt)) | |
plt.ylabel('hypervolume comp time (seconds)') | |
plt.grid() | |
plt.tight_layout() | |
plt.savefig('hv_summary.png') | |
plt.clf() | |
plt.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Output Plots:
