Created
May 4, 2020 03:05
-
-
Save DSCF-1224/6d40955be52211f8a37bd3b66cb5bf29 to your computer and use it in GitHub Desktop.
ガウス過程と機械学習 第1章 lm.py version 01
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# ================================================================================================================================== | |
# ISBN 978-4-06-152926-7 | |
# ガウス過程と機械学習 | |
# | |
# [reference] | |
# http://chasen.org/~daiti-m/gpbook/python/lm.py | |
# http://chasen.org/~daiti-m/gpbook/data/nonlinear.dat | |
# https://nbviewer.jupyter.org/gist/genkuroki/a37894d5669ad13b4cd27da16096bfd2 | |
# https://github.com/JuliaData/CSV.jl/issues/371 <- `ignorerepeated = true` | |
# | |
# [How to execute] | |
# Base.cd("?\\GitHub\\ISBN9784061529267\\julia\\chap01") | |
# Base.MainInclude.include("?\\GitHub\\ISBN9784061529267\\julia\\chap01\\lm_v03.jl") | |
# ================================================================================================================================== | |
module ISBN9784061529267 | |
import CSV # v0.6.1 | |
import HTTP # v0.8.14 | |
import Printf | |
export main | |
struct ObservedData | |
size :: Core.Int64 | |
inpt :: Base.Vector{Core.Float64} # observed input | |
otpt :: Base.Vector{Core.Float64} # observed output | |
end | |
struct RegressionDegree | |
poly :: Core.Int64 | |
trig :: Core.Int64 | |
end | |
struct RegressionWeight | |
degree :: RegressionDegree | |
value :: Base.Vector{Core.Float64} | |
end | |
mutable struct EstimatedData | |
size :: Core.Int64 | |
inpt :: Base.Vector{Core.Float64} # input to estimate | |
otpt :: Base.Vector{Core.Float64} # estimated output | |
end | |
function read_data(file_path) | |
# STEP.01 | |
# get the sample data from online | |
# obj_CSV = CSV.read("../../downloaded/chap01/nonlinear.dat"; delim=' ', ignorerepeated = true, header=[:inpt, :otpt], footerskip=1) # access to local file | |
obj_CSV = CSV.read(HTTP.get(file_path).body; delim=' ', ignorerepeated = true, header=[:inpt, :otpt], footerskip=1) # access to online file | |
# STEP.02 | |
# convert the read data to the array on Julia | |
data_size = Base.size(obj_CSV.inpt, 1) | |
buffer_inpt = Base.zeros(data_size) | |
buffer_otpt = Base.zeros(data_size) | |
for itr in 1:1:data_size | |
buffer_inpt[itr] = obj_CSV.inpt[itr] | |
buffer_otpt[itr] = obj_CSV.otpt[itr] | |
end | |
# STEP.END | |
# return `ObservedData` instance which is generated from read data | |
return ObservedData(data_size, buffer_inpt, buffer_otpt) | |
end | |
function compute_weight(degree::RegressionDegree, observed_data::ObservedData) | |
# STEP.01 | |
# prepare the array to store the design matrix | |
design_matrix = Base.ones(Core.Float64, observed_data.size, degree.poly + 2 * degree.trig + 1) | |
# STEP.02 | |
# compute the polynominal part of the design matrix | |
for itr_cl in 2:1:(degree.poly + 1) | |
design_matrix[:, itr_cl] = design_matrix[:, itr_cl - 1] .* observed_data.inpt[:] | |
end | |
# STEP.03 | |
# compute the trigonometric function part of the design matrix | |
for itr_cl in 1:1:degree.trig | |
design_matrix[:, (degree.poly + 1) + (2 * itr_cl - 1)] = Base.cos.(itr_cl * observed_data.inpt) | |
design_matrix[:, (degree.poly + 1) + (2 * itr_cl )] = Base.sin.(itr_cl * observed_data.inpt) | |
end | |
# STEP.04 | |
# generate the transposed design matrix | |
design_matrix_transposed = Base.transpose(design_matrix) | |
# STEP.END | |
# compute the weight of regression | |
# return `RegressionWeight` instance | |
return RegressionWeight( degree, Base.inv( design_matrix_transposed * design_matrix ) * design_matrix_transposed * observed_data.otpt ) | |
end | |
function estimate_output(size::Core.Int64, observed_data::ObservedData, regression_weight::RegressionWeight) | |
# STEP.01 | |
# compute the input | |
buffer_extrema = Base.extrema(observed_data.inpt) | |
buffer_input = Base.range( buffer_extrema[1]; length = size, stop = buffer_extrema[2] ) | |
# STEP.02 | |
# compute the output (polynominal part) | |
itr_degree = regression_weight.degree.poly | |
buffer_output = regression_weight.value[itr_degree] .+ regression_weight.value[itr_degree + 1] .* buffer_input | |
while itr_degree > 1 | |
itr_degree -= 1 | |
buffer_output = buffer_input .* buffer_output .+ regression_weight.value[itr_degree] | |
end | |
# STEP.03 | |
# compute the output (trigonometric function part) | |
for itr_degree in 1:1:regression_weight.degree.trig | |
buffer_output += regression_weight.value[ (regression_weight.degree.poly + 1) + (2 * itr_degree - 1) ] * Base.cos.(itr_degree * buffer_input) | |
buffer_output += regression_weight.value[ (regression_weight.degree.poly + 1) + (2 * itr_degree ) ] * Base.sin.(itr_degree * buffer_input) | |
end | |
return EstimatedData(size, buffer_input, buffer_output) | |
end | |
function save_result(observed_data::ObservedData, regression_weight::RegressionWeight, estimated_data::EstimatedData) | |
obj_txt_result = Base.open("result.csv", "w") | |
Printf.@printf(obj_txt_result, "%s,%s\n", "degree", "weight") | |
for itr in 1:1:(regression_weight.degree.poly + 2 * regression_weight.degree.trig + 1) | |
Printf.@printf(obj_txt_result, "%d,%E\n", itr - 1, regression_weight.value[itr]) | |
end | |
Printf.@printf(obj_txt_result, "\n") | |
Printf.@printf(obj_txt_result, "%s,%s\n", "input", "output (observed)") | |
for itr in 1:1:observed_data.size | |
Printf.@printf(obj_txt_result, "%E,%E\n", observed_data.inpt[itr], observed_data.otpt[itr]) | |
end | |
Printf.@printf(obj_txt_result, "\n") | |
Printf.@printf(obj_txt_result, "%s,%s\n", "input", "output (estimated)") | |
for itr in 1:1:estimated_data.size | |
Printf.@printf(obj_txt_result, "%E,%E\n", estimated_data.inpt[itr], estimated_data.otpt[itr]) | |
end | |
Base.close( obj_txt_result ) | |
end | |
function main() | |
# STEP.01 | |
# get the sample data from online | |
obj_observed_data = read_data("http://chasen.org/~daiti-m/gpbook/data/nonlinear.dat") | |
# STEP.02 | |
# compute the weight for regression | |
obj_regression_weight = compute_weight( RegressionDegree(2, 1), obj_observed_data ) | |
# STEP.03 | |
# compute the estimated output using regression | |
obj_estimated_data = estimate_output(101, obj_observed_data, obj_regression_weight) | |
# STEP.04 | |
# save the computed result | |
save_result(obj_observed_data, obj_regression_weight, obj_estimated_data) | |
end | |
end | |
# ================================================================================================================================== | |
@time ISBN9784061529267.main() | |
# ================================================================================================================================== | |
# EOF | |
# ================================================================================================================================== |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# ================================================================================================================================== | |
# ISBN 978-4-06-152926-7 | |
# ガウス過程と機械学習 | |
# | |
# [reference] | |
# http://chasen.org/~daiti-m/gpbook/python/lm.py | |
# http://chasen.org/~daiti-m/gpbook/data/nonlinear.dat | |
# https://nbviewer.jupyter.org/gist/genkuroki/a37894d5669ad13b4cd27da16096bfd2 | |
# https://github.com/JuliaData/CSV.jl/issues/371 <- `ignorerepeated = true` | |
# ================================================================================================================================== | |
set datafile separator comma | |
set key on outside right center vertical Left reverse | |
set format x '%3.1f' | |
set format y '%3.1f' | |
set xlabel 'input' | |
set ylabel 'output' | |
set xzeroaxis linetype -1 | |
set yzeroaxis linetype -1 | |
plot 'result.csv' using 1:2 every ::1:1::1 with points title 'observed' , \ | |
'result.csv' using 1:2 every ::1:2::2 with lines title 'regression' | |
# ================================================================================================================================== | |
# EOF | |
# ================================================================================================================================== |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
degree | weight | |
---|---|---|
0 | -9.542660E-02 | |
1 | 7.232296E-02 | |
2 | 2.420071E-02 | |
3 | -9.087541E-01 | |
4 | 2.993996E-01 | |
input | output (observed) | |
2.761362E+00 | 7.812694E-01 | |
-2.502037E+00 | 5.784024E-01 | |
-6.534198E-01 | -8.364839E-01 | |
-5.093708E-01 | -1.065994E+00 | |
1.069812E+00 | -5.053178E-01 | |
1.244485E+00 | 6.569320E-02 | |
-1.583863E-01 | -1.713290E+00 | |
-1.818896E+00 | 1.539270E-01 | |
-3.612937E+00 | 1.044064E+00 | |
-2.826306E+00 | 7.741641E-01 | |
-1.020446E+00 | -8.304516E-01 | |
2.611304E-01 | -1.320288E+00 | |
-9.667795E-01 | -1.083977E+00 | |
4.701717E-01 | -4.560080E-02 | |
-7.279929E-01 | -3.691600E-02 | |
3.050133E-01 | -1.170321E+00 | |
3.901433E-01 | -7.787978E-01 | |
3.043049E+00 | 1.279998E+00 | |
-1.630756E+00 | -2.210154E-01 | |
-3.516084E+00 | 5.724240E-01 | |
-6.489837E+00 | -4.126926E-01 | |
1.820185E+00 | 9.120053E-01 | |
-7.767629E-01 | -8.371592E-01 | |
-3.410699E+00 | 6.317732E-01 | |
-9.195992E-01 | -1.247660E+00 | |
-1.124827E+00 | -4.371627E-01 | |
-1.511641E+00 | -7.774516E-01 | |
1.820330E+00 | 1.251691E+00 | |
-1.118554E+00 | -1.622740E+00 | |
input | output (estimated) | |
-6.489837E+00 | -4.963564E-01 | |
-6.394508E+00 | -5.047257E-01 | |
-6.299179E+00 | -5.041520E-01 | |
-6.203851E+00 | -4.948439E-01 | |
-6.108522E+00 | -4.770853E-01 | |
-6.013193E+00 | -4.512327E-01 | |
-5.917864E+00 | -4.177122E-01 | |
-5.822535E+00 | -3.770155E-01 | |
-5.727206E+00 | -3.296957E-01 | |
-5.631877E+00 | -2.763616E-01 | |
-5.536548E+00 | -2.176730E-01 | |
-5.441220E+00 | -1.543342E-01 | |
-5.345891E+00 | -8.708772E-02 | |
-5.250562E+00 | -1.670757E-02 | |
-5.155233E+00 | 5.600776E-02 | |
-5.059904E+00 | 1.302426E-01 | |
-4.964575E+00 | 2.051714E-01 | |
-4.869246E+00 | 2.799663E-01 | |
-4.773918E+00 | 3.538049E-01 | |
-4.678589E+00 | 4.258771E-01 | |
-4.583260E+00 | 4.953930E-01 | |
-4.487931E+00 | 5.615901E-01 | |
-4.392602E+00 | 6.237397E-01 | |
-4.297273E+00 | 6.811540E-01 | |
-4.201944E+00 | 7.331924E-01 | |
-4.106616E+00 | 7.792666E-01 | |
-4.011287E+00 | 8.188470E-01 | |
-3.915958E+00 | 8.514666E-01 | |
-3.820629E+00 | 8.767257E-01 | |
-3.725300E+00 | 8.942956E-01 | |
-3.629971E+00 | 9.039212E-01 | |
-3.534642E+00 | 9.054236E-01 | |
-3.439313E+00 | 8.987017E-01 | |
-3.343985E+00 | 8.837329E-01 | |
-3.248656E+00 | 8.605739E-01 | |
-3.153327E+00 | 8.293593E-01 | |
-3.057998E+00 | 7.903010E-01 | |
-2.962669E+00 | 7.436863E-01 | |
-2.867340E+00 | 6.898750E-01 | |
-2.772011E+00 | 6.292960E-01 | |
-2.676683E+00 | 5.624441E-01 | |
-2.581354E+00 | 4.898746E-01 | |
-2.486025E+00 | 4.121992E-01 | |
-2.390696E+00 | 3.300794E-01 | |
-2.295367E+00 | 2.442216E-01 | |
-2.200038E+00 | 1.553698E-01 | |
-2.104709E+00 | 6.429921E-02 | |
-2.009381E+00 | -2.819070E-02 | |
-1.914052E+00 | -1.212837E-01 | |
-1.818723E+00 | -2.141539E-01 | |
-1.723394E+00 | -3.059737E-01 | |
-1.628065E+00 | -3.959208E-01 | |
-1.532736E+00 | -4.831861E-01 | |
-1.437407E+00 | -5.669807E-01 | |
-1.342078E+00 | -6.465435E-01 | |
-1.246750E+00 | -7.211474E-01 | |
-1.151421E+00 | -7.901066E-01 | |
-1.056092E+00 | -8.527827E-01 | |
-9.607630E-01 | -9.085900E-01 | |
-8.654342E-01 | -9.570016E-01 | |
-7.701053E-01 | -9.975533E-01 | |
-6.747765E-01 | -1.029849E+00 | |
-5.794476E-01 | -1.053562E+00 | |
-4.841187E-01 | -1.068442E+00 | |
-3.887899E-01 | -1.074312E+00 | |
-2.934610E-01 | -1.071076E+00 | |
-1.981321E-01 | -1.058715E+00 | |
-1.028033E-01 | -1.037287E+00 | |
-7.474416E-03 | -1.006932E+00 | |
8.785445E-02 | -9.678654E-01 | |
1.831833E-01 | -9.203769E-01 | |
2.785122E-01 | -8.648297E-01 | |
3.738410E-01 | -8.016560E-01 | |
4.691699E-01 | -7.313531E-01 | |
5.644988E-01 | -6.544792E-01 | |
6.598276E-01 | -5.716481E-01 | |
7.551565E-01 | -4.835237E-01 | |
8.504854E-01 | -3.908140E-01 | |
9.458142E-01 | -2.942646E-01 | |
1.041143E+00 | -1.946520E-01 | |
1.136472E+00 | -9.277653E-02 | |
1.231801E+00 | 1.054493E-02 | |
1.327130E+00 | 1.144864E-01 | |
1.422459E+00 | 2.182201E-01 | |
1.517787E+00 | 3.209245E-01 | |
1.613116E+00 | 4.217910E-01 | |
1.708445E+00 | 5.200319E-01 | |
1.803774E+00 | 6.148872E-01 | |
1.899103E+00 | 7.056319E-01 | |
1.994432E+00 | 7.915821E-01 | |
2.089761E+00 | 8.721015E-01 | |
2.185089E+00 | 9.466070E-01 | |
2.280418E+00 | 1.014574E+00 | |
2.375747E+00 | 1.075542E+00 | |
2.471076E+00 | 1.129117E+00 | |
2.566405E+00 | 1.174978E+00 | |
2.661734E+00 | 1.212874E+00 | |
2.757063E+00 | 1.242636E+00 | |
2.852391E+00 | 1.264167E+00 | |
2.947720E+00 | 1.277454E+00 | |
3.043049E+00 | 1.282559E+00 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment